Aicha Achab, Marie-Pierre Dabard, Thijs R.A. Vandenbroucke, Esther Asselin, André Desrochers, Jean-François Ghienne, Florentin Paris, Steven Wickson, Ján Veizer, Claude Farley, Alfredo Loi, Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Department of Earth Sciences [Ottawa], University of Ottawa [Ottawa], Géosystèmes - UMR 8217 (Géosystèmes), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies, Centre Eau Terre Environnement [Québec] (INRS - ETE), Institut National de la Recherche Scientifique [Québec] (INRS), Tosca Consultants, PME, Géosciences Rennes (GR), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Dipartimento di Scienze Chimiche e Geologiche, University of Ottawa, Dept. of Geology, Marion Hall, Ottawa , ON, Canada, Université de Lille, Sciences et Technologies-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Geological Survey of Canada [Québec] (GSC Québec), Geological Survey of Canada - Office (GSC), Natural Resources Canada (NRCan)-Natural Resources Canada (NRCan), Dipartimento di Scienze Chimiche e Geologiche Centro Grandi Strumenti and INSTM unit, Università di Cagliari, NSERC, Insu SYSTER, ANR-12-BS06-0014,SeqStrat-Ice,Les glaciations du passé: leçons pour un modèle de stratigraphie séquentielle dédié aux systèmes glaciaires(2012), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Géosystèmes - UMR 8217, Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Cagliari = University of Cagliari (UniCa), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex., Claims that the end-Ordovician Earth was characterized by giant ice sheets, yet paradoxically warm oceans and elevated CO2 levels are open to debate. Here, Ghienne et al. examine sedimentary records from low and high palaeolatitude settings and propose a revision of the mechanisms for end-Ordovician events.