42 results on '"Ivan Lupelli"'
Search Results
2. Preemptive data distribution infrastructure for data centric analysis and modelling
- Author
-
Ivan Lupelli, David Muir, Shaun de Witt, Rob Akers, and Jonathan Hollocombe
- Subjects
Data collection ,Computer science ,business.industry ,Integration testing ,Mechanical Engineering ,Data management ,Distributed computing ,Distribution (economics) ,01 natural sciences ,Database-centric architecture ,010305 fluids & plasmas ,Set (abstract data type) ,Nuclear Energy and Engineering ,Work (electrical) ,0103 physical sciences ,Spark (mathematics) ,General Materials Science ,010306 general physics ,business ,Civil and Structural Engineering - Abstract
The next generation of tokamaks, e.g. ITER, will have extremely large data collection rates significantly larger than those experienced today in present tokamaks, with consequential new challenges in data management, data analysis and integrated modelling. One of these challenges is to ensure that appropriate data is efficiently made available when it is required and where it is consumed. Data volumes with limited network capabilities mean not all data can be distributed in time when a data-object is requested. One possible solution is to preemptively identify and distribute efficiently the data across the storage services before a user or an application requests it. Preemptive data distribution rely on analysis of historical access patterns to identify a set of rules whereby following a data-object request the most probable set of next requests can be inferred. Implementation of these rules requires the inferred sets of data to be moved close to data-object consumer. The work presented will describe the Apache Spark Machine Learning tools, the results of the analysis, and an implementation of the preemptive distribution experimental platform at CCFE, together with plans for its future integration and testing on the upcoming SAGE platform.
- Published
- 2017
- Full Text
- View/download PDF
3. Provenance metadata gathering and cataloguing of EFIT++ code execution
- Author
-
L.C. Appel, P. Abreu, David Muir, Ivan Lupelli, M. Carr, and Rob Akers
- Subjects
Data processing ,Data collection ,Data element ,Database ,business.industry ,Computer science ,Mechanical Engineering ,Data management ,computer.software_genre ,Metadata repository ,Data mapping ,Metadata ,Workflow ,Nuclear Energy and Engineering ,General Materials Science ,business ,computer ,Civil and Structural Engineering - Abstract
Journal publications, as the final product of research activity, are the result of an extensive complex modeling and data analysis effort. It is of paramount importance, therefore, to capture the origins and derivation of the published data in order to achieve high levels of scientific reproducibility, transparency, internal and external data reuse and dissemination. The consequence of the modern research paradigm is that high performance computing and data management systems, together with metadata cataloguing, have become crucial elements within the nuclear fusion scientific data lifecycle. This paper describes an approach to the task of automatically gathering and cataloguing provenance metadata, currently under development and testing at Culham Center for Fusion Energy. The approach is being applied to a machine-agnostic code that calculates the axisymmetric equilibrium force balance in tokamaks, EFIT++, as a proof of principle test. The proposed approach avoids any code instrumentation or modification. It is based on the observation and monitoring of input preparation, workflow and code execution, system calls, log file data collection and interaction with the version control system. Pre-processing, post-processing, and data export and storage are monitored during the code runtime. Input data signals are captured using a data distribution platform called IDAM. The final objective of the catalogue is to create a complete description of the modeling activity, including user comments, and the relationship between data output, the main experimental database and the execution environment. For an intershot or post-pulse analysis (∼1000 time slices, 65 × 65 grid, mpi execution n = 8 cores) of a typical MAST pulse, the overhead in the code runtime caused by the Provenance Metadata Gathering System is less than 10%, the metadata/data size ratio is about ∼20%, which we consider to be reasonable according to the present literature. A visualization interface based on Gephi for catalogue interrogation, will be presented.
- Published
- 2015
- Full Text
- View/download PDF
4. Simulations and Experiments to Reach Numerical Multiphase Informations for Security Analysis on Large Volume Vacuum Systems Like Tokamaks
- Author
-
Ivan Lupelli, Michela Gelfusa, Pasquale Gaudio, Andrea Malizia, Maria Richetta, L.A. Poggi, and J.F. Ciparisse
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,business.industry ,Nuclear engineering ,Computational fluid dynamics ,Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin) ,law.invention ,Nuclear physics ,Nuclear Energy and Engineering ,Cabin pressurization ,law ,Heat transfer ,Nuclear fusion ,Supersonic speed ,Transport phenomena ,business ,Loss-of-coolant accident - Abstract
Dust re-suspension as a consequences of loss of vacuum accident (LOVA) or loss of coolant accident (LOCA) situations inside a nuclear fusion plant (ITER-like) is an important issue for the workers’ safety and for the security of the plant. The dust size expected inside tokamaks like ITER is of the order of microns (0.1–1000 μm). Analysis of the thermo fluid-dynamics and transport phenomena involved during an accidental pressurization transitory is necessary in order to set up and operated tokamaks with careful consideration of the potential risks. Computational fluid dynamics (CFD) study of LOVA scenario is a challenging task for today numerical methods and models because it involves 3D large vacuum volumes, multiphase flows ranging from highly supersonic to nearly incompressible and heat transfer simultaneously. Present work deals with development and experimental validation of CFD model, which simulates the complex thermo fluid-dynamic field and gives some indication about internal hazardous dust mobilization phenomena during vessel filling at near vacuum conditions, for supporting first instant of LOVA safety analysis. The research activity had been carried out in the framework of EURATOM–ENEA Association—University of Rome Tor Vergata Quantum Electronics Plasma Physics and Materials Research Group.
- Published
- 2015
- Full Text
- View/download PDF
5. Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C
- Author
-
Hyun-Tae Kim, S. Menmuir, Jet Contributors, J. Flanagan, Elisabeth Rachlew, C. Giroud, P. Drewelow, U. Kruezi, E. Stefanikova, Petra Bilkova, P. J. Lomas, C. F. Maggi, E. de la Luna, M. N. A. Beurskens, M. Peterka, Lorenzo Frassinetti, Isabel L. Nunes, N Hawks, M. Kempenaars, S. Saarelma, J. E. Boom, L. Garzotti, F.G. Rimini, Ivan Lupelli, E. Delabie, A. Loarte, B. Lomanowski, M. Romanelli, L. Meneses, E. Joffrin, and JET Contributors
- Subjects
DIII-D ,Gyroradius ,Astrophysics::High Energy Astrophysical Phenomena ,Atmospheric-pressure plasma ,Collisionality ,complex mixtures ,01 natural sciences ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Pedestal ,Physics::Plasma Physics ,0103 physical sciences ,010306 general physics ,Physics ,Jet (fluid) ,Mechanics ,respiratory system ,equipment and supplies ,Condensed Matter Physics ,Nuclear Energy and Engineering ,Beta (plasma physics) ,Physics::Space Physics ,High Energy Physics::Experiment ,human activities ,circulatory and respiratory physiology ,Dimensionless quantity - Abstract
Three dimensionless scans in the normalized Larmor radius rho*, normalized collisionality nu* and normalized plasma pressure beta have been performed in JET with the ITER-like wall (JET-ILW). The n ...
- Published
- 2017
- Full Text
- View/download PDF
6. Overview of the JET results in support to ITER
- Author
-
Alfredo Pironti, J. Simpson-Hutchinson, Sean Conroy, J. Uljanovs, D. Middleton-Gear, G. Possnert, C. Angioni, R. McAdams, Nicholas Watkins, E. Fortuna-Zalesna, A. Garcia-Carrasco, K. Gałązka, D. Nodwell, Pasquale Gaudio, R.A. Pitts, Svetlana V. Ratynskaia, Seppo Koivuranta, O. J. Kwon, C. Boyd, A. Boboc, M. Reinhart, Igor Lengar, Jarrod Leddy, Hiroyasu Utoh, J. H. Ahn, A. Stevens, J. Lönnroth, U. Kruezi, C. Guillemaut, N. Fonnesu, W. Studholme, Marek Rubel, P. Cahyna, O. McCormack, A. S. Jacobsen, D. Mazon, Gunta Kizane, N. Ashikawa, William Tang, J. Goff, F. Nespoli, Thomas Giegerich, G. Petravich, Angela Busse, Corneliu Porosnicu, M. Bigi, M. Wheatley, Christopher N. Bowman, J. Zacks, Ivan Calvo, U. Losada, H. Weisen, B. Bauvir, Stanislas Pamela, Sylvain Brémond, M.F. Stamp, Scott W. McIntosh, A. Rakha, S. Glöggler, V. Braic, C. Bottereau, S. Murphy, S. Knott, Luigi Fortuna, P. Bunting, N. Vora, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, Gabriele Croci, M. Nocente, A. Hollingsworth, S. Reynolds, D. J. Wilson, D. D. Brown, T.C. Luce, S. Zoletnik, E. Nilsson, L. Laguardia, O. Marchuk, F.P. Orsitto, E. Cecil, V. Huber, J. B. Girardo, Stylianos Varoutis, M. D. Axton, Hyun-Tae Kim, E. Safi, Ch. Day, S. Arshad, J. Rzadkiewicz, P. Prior, A. Meigs, S. Esquembri, P. Gohil, K. Purahoo, Torbjörn Hellsten, N. Tipton, R. Guirlet, E. Joffrin, V. Aldred, Calin Besliu, M. Valentinuzzi, G. T. Jones, J. Edwards, Giuseppe Ambrosino, Laurent Marot, N. Lam, F. Crisanti, G. Verona Rinati, R. Marshal, Michael L. Brown, D. Frigione, D. Chandra, Michaele Freisinger, R. Olney, Jari Varje, S. Whetham, F. Parra Diaz, M. R. Hough, P. Dinca, F. Salzedas, A. Goodyear, R. Gowland, J. A. Wilson, J. Horacek, D. King, K. Flinders, I. R. Merrigan, M. Ghate, R. Michling, F. Saint-Laurent, G. Kocsis, D. Van Eester, C. Young, R. O. Dendy, A. Meakins, N. Pace, C. L. Hunter, D. Alegre, S. Foster, V. Riccardo, M. Bulman, C. Jeong, Marek Szawlowski, B. D. Whitehead, Vasily Kiptily, James Harrison, Hiroshi Tojo, G. T. A. Huijsmans, J. W. Coenen, X. Litaudon, Justin Williams, C. Hidalgo, S. Lesnoj, I.E. Day, A. W. Morris, R. Mooney, Yann Corre, S. Brezinsek, B. Gonçalves, M. Kresina, D. Coombs, F. Köchl, J. L. Gardarein, W. Davis, Aqsa Shabbir, Kanti M. Aggarwal, L. Colas, A. B. Kukushkin, Seppo Sipilä, Elisabeth Rachlew, Leena Aho-Mantila, O. G. Pompilian, E. Viezzer, Shane Cooper, Fabio Villone, P. Blanchard, Patrick Tamain, P. Camp, T. Szabolics, C. Luna, Kalle Heinola, H. G. Esser, V. Bobkov, James Buchanan, Andrew West, Hajime Urano, Roberta Lima Gomes, J.P. Coad, Th. Pütterich, A. Sinha, S. Hollis, R. D. Wood, G. D. Ewart, F. S. Griph, T. Kobuchi, X. Lefebvre, S. Warder, A.J. Thornton, S. Peschanyi, B. Graham, Giuseppe Telesca, M. Kempenaars, J. Bernardo, M. Hughes, Eva Belonohy, S. Schmuck, Kai Nordlund, T. J. Smith, P. Hertout, K. D. Lawson, M. Brix, Matthew Sibbald, Grégoire Hornung, C. Tame, Matthew Carr, S. Wray, P. T. Doyle, A. Somers, Giuseppe Chitarin, D. C. Campling, Mitul Abhangi, I. Jepu, David A. Wood, J. Miettunen, A. Sopplesa, Raffaele Fresa, S. Saarelma, M. Bacharis, J. Pozzi, P. Vallejos Olivares, Teddy Craciunescu, Raffaele Albanese, S. Knipe, Jason P. Byrne, A. C. C. Sips, S. Hazel, V. Kazantzidis, G. Stankūnas, A. Kundu, J. Mailloux, C. Guerard, Pramit Dutta, J. E. Boom, Eduardo Alves, P. Grazier, Saskia Mordijck, V.S. Neverov, Kazuo Hoshino, A. P. Vadgama, P. D. Brennan, P. Innocente, Piergiorgio Sonato, M. Irishkin, M. Berry, D. W. Robson, Dieter Leichtle, Fabio Pisano, P. McCullen, T. M. Huddleston, Kensaku Kamiya, D. Pacella, Tommy Ahlgren, A. Kirschner, B. Magesh, A. Ash, J. Mlynář, C. Castaldo, C. Marchetto, D. L. Hillis, M. Incelli, B. Viola, R. J. Robins, E. Andersson Sundén, G. Ramogida, Matthew Reinke, Gerd Meisl, Yannis Kominis, R. Proudfoot, C. Noble, N. J. Conway, V. P. Lo Schiavo, Jorge Luis Rodriguez, Hugo Bufferand, C. H. A. Hogben, B. Evans, R. Sartori, H. Greuner, M. G. Dunne, K. Schöpf, M. I. K. Santala, E. Giovannozzi, A. E. Shevelev, C. Gil, P. Boulting, P. Sagar, A.E. Shumack, P. A. Coates, C. Ayres, R. Prakash, C. Giroud, M. Parsons, J. C. Giacalone, S. Meshchaninov, A. Peackoc, G. De Temmerman, A.C.A. Figueiredo, D. Gallart, P. Santa, Sergey Popovichev, Ivan Lupelli, M. Valovic, Thomas Johnson, Y. Martynova, M. Rack, Olivier Sauter, J. Garcia, P. Siren, I. Balboa, S. Lee, Hans Nordman, R. Roccella, M. Faitsch, Julien Hillairet, Patrick J. McCarthy, C. Reux, Irena Ivanova-Stanik, V. Coccorese, Ye. O. Kazakov, R. El-Jorf, C. Hamlyn-Harris, Matthias Weiszflog, C. F. Maggi, Panagiotis Tolias, N. C. Hawkes, E. Clark, Bruno Santos, B. Sieglin, R. Rodionov, Roch Kwiatkowski, P. Denner, C. Woodley, Hugh Summers, Francesco Pizzo, G. Pucella, D. Croft, F. Di Maio, M. Tomes, D. Molina, A. Fernades, L. Amicucci, Marco Cecconello, A. Bisoffi, Z. Ul-Abidin, J. Wilkinson, H. Maier, S. Rowe, M. Beckers, P.J. Knight, E. Pajuste, Choong-Seock Chang, K. Deakin, M. Enachescu, A. Cobalt, D. Tskhakaya Jun, Michela Gelfusa, Rémy Nouailletas, R. Ragona, N. Bonanomi, D. A. Homfray, K. Riddle, Yann Camenen, J. D. Thomas, R.P. Doerner, Timothy P. Robinson, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, D. Pulley, A. Bécoulet, E. Tholerus, O. Bogar, M. Peterka, R. Crowe, C. Sommariva, A. R. Talbot, N. K. Butler, N. Reid, R. Zagórski, Gerald Pintsuk, Juri Romazanov, Andre Neto, G. L. Ravera, Paolo Arena, A. Manning, F. Durodié, Maryna Chernyshova, D. Karkinsky, Štefan Matejčík, J. P. Thomas, A. Wilson, L. Joita, R. Naish, P. Strand, M. Balden, M. Kaufman, T. Powell, V. Schmidt, D. Barnes, José Vicente, S. Doswon, Daniel F. Valcarcel, Claudia Corradino, R. Warren, Annette M. Hynes, J. D. Strachan, A. M. Messiaen, M. Kovari, O. Omolayo, D. M. Witts, R. C. Felton, C. Fleming, C. A. Marren, Patrick Maget, J. Galdon-Quiroga, H. R. Koslowski, Bruce Lipschultz, Ana Elisa Bauer de Camargo Silva, J. Waterhouse, R. J. Dumont, M. Schneider, Sara Moradi, K. J. Nicholls, M. Beldishevski, Benedikt Geiger, A. Jardin, A. Ekedahl, A. Lyssoivan, C. Waldon, Davide Galassi, F. Jaulmes, A. Kirk, Yannick Marandet, F. Hasenbeck, Gabor Szepesi, R. C. Pereira, J. Juul Rasmussen, Nobuyuki Aiba, Michelle E. Walker, Gábor Cseh, Scott W. Mosher, R. Bastow, A. Di Siena, E. Lazzaro, M. Curuia, C. D. Challis, Z. Ghani, J. Deane, João M. C. Sousa, Henrik Sjöstrand, T. O'Gorman, H. R. Wilson, P. Devynck, M. Price, C. A. Thompson, Daniele Marocco, A. Cullen, M. Clark, M. Lennholm, D. Carralero, N. Balshaw, Roland Sabot, I. Stepanov, N. Petrella, Filippo Sartori, L. W. Packer, P. Thomas, M. Lungu, A. V. Krasilnikov, R. Young, Jonathan Graves, J. C. Hillesheim, Mǎdǎlina Vlad, Duccio Testa, Pierre Dumortier, Paulo Carvalho, M. Gosk, Yong-Su Na, M. Buckley, Carlos A. Silva, V. Fuchs, K. Vasava, P. A. Tigwell, B. Wakeling, M. Medland, M. Bellinger, K. Gal, Petter Ström, E. Veshchev, F. Nabais, A. Wynn, L. Lauro Taroni, B. Beckett, L. Gil, M. Towndrow, Brian Grierson, Harry M. Meyer, V. Philipps, A. de Castro, D. Kinna, D. Conka, Göran Ericsson, L. Piron, J. Hawkins, D. Cooper, Kenneth Hammond, V.V. Parail, Cristian Ruset, G.J. van Rooij, M. N. A. Beurskens, N. Fawlk, G. Evison, M. Van De Mortel, N. Marcenko, B. Slade, Th. Franke, Simone Peruzzo, N. den Harder, D. Baião, A. Martin de Aguilera, Frederic Imbeaux, Carlo Sozzi, J.L. de Pablos, J. Svensson, A. Withycombe, Ane Lasa, H. Sheikh, V.A. Yavorskij, Nick Walkden, E. Lerche, C. S. Gibson, Roberto Zanino, Y. Peysson, David Hatch, B. Bazylev, E. de la Cal, S. Hacquin, T. D. V. Haupt, S. A. Silburn, T.T.C. Jones, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, M. Zerbini, Ken W Bell, Marco Marinelli, Kyriakos Hizanidis, J. M. Fontdecaba, N. Teplova, K. K. Kirov, S. Vartanian, W. W. Pires de Sa, T. C. Hender, J. K. Blackburn, I. Monakhov, H. Patten, P. A. Simmons, Y. Austin, J. Regana, Stefano Coda, Amanda J. Page, D. Fuller, António J.N. Batista, A. Horton, P. Heesterman, S. Cramp, J. Hobirk, F. Clairet, A. Burckhart, M. Allinson, Larry R. Baylor, W. Leysen, D. B. Gin, P. Nielsen, A. Kantor, Yueqiang Liu, A.V. Stephen, Jose Ramon Martin-Solis, P. Mantica, B. C. Regan, Aleksander Drenik, A. Lukin, L. Thorne, G. Nemtsev, J. Denis, M. E. Graham, D. Rigamonti, W. Van Renterghem, M. Tardocchi, M. Koubiti, A. Malaquias, M. Tsalas, A. Cufar, Giuseppe Prestopino, D. Kogut, N. Pomaro, J. Keep, Jochen Linke, Shimpei Futatani, Boris Breizman, A. Sirinelli, M. Chandler, M. Fortune, F. Degli Agostini, I. Jenkins, T. Spelzini, G. Calabrò, O. N. Kent, A. Lunniss, Etienne Hodille, Z. Vizvary, Volker Naulin, T. Eich, F. Mink, A. Alkseev, P. W. Haydon, Massimo Angelone, Norberto Catarino, J. Lapins, Roberto Pasqualotto, R. Lawless, T. Schlummer, F. Bonelli, M. Wischmeier, Stéphane Devaux, G. Saibene, Dirk Reiser, Y. R. Martin, H. Bergsåker, Jon Godwin, Alessia Santucci, C. Lane, Justyna Grzonka, Ph. Mertens, Claudio Verona, David Moulton, E. Delabie, Anna Salmi, P. G. Smith, T. Bolzonella, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, M. A. Henderson, M. Marinucci, T. Suzuki, Jakub Bielecki, João Figueiredo, M. Afzal, J. Cane, Robert Hager, Luciano Bertalot, M. Firdaouss, G. Tvalashvili, D. Hepple, D. Esteve, M. De Bock, Y. Baranov, R. D'Inca, G. De Tommasi, Ch. Linsmeier, T. Nicolas, I. J. Pearson, P. Finburg, Ireneusz Książek, S. Talebzadeh, A. Czarnecka, A. Botrugno, M. Gethins, Bohdan Bieg, R. Baughan, I. Borodkina, B. Kos, A. Muraro, T. Vasilopoulou, G. Hermon, S.J. Wukitch, Jari Likonen, D. P. Coster, Guglielmo Rubinacci, I. H. Coffey, Justine M. Kent, S. E. Dorling, J. Dankowski, Geert Verdoolaege, Daisuke Nishijima, R. Clarkson, E. R. Solano, M. Stephen, A. Lescinskis, P. Staniec, Karl Schmid, M. Mayer, Peter Lang, T. Franklin, M.I. Williams, C. G. Elsmore, F. Maviglia, C. Di Troia, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, Yu Gao, Philipp Drews, E. Letellier, A. S. Thompson, L. Forsythe, I. Zychor, E. Khilkevich, A. Manzanares, T. Nakano, Paulo Rodrigues, J. Edmond, Sebastián Dormido-Canto, R. Dux, C. Appelbee, L. Moser, Angelo Cenedese, D. Fagan, N. Richardson, Giuseppe Gorini, V. Rohde, R. Paprok, João P. S. Bizarro, P. Aleynikov, M. Sertoli, Ł. Świderski, Simone Palazzo, O. W. Davies, D. Douai, N. Macdonald, M. Baruzzo, J. López-Razola, M. Lungaroni, D. Clatworthy, R. Bravanec, J. Lovell, Ambrogio Fasoli, S.-P. Pehkonen, M. E. Puiatti, P. Papp, G. Bodnar, V. Aslanyan, A. Weckmann, K. A. Taylor, R. Henriques, I. T. Chapman, Ewa Pawelec, Miles M. Turner, Steven J. Meitner, M. Bernert, Ph. Maquet, R. C. Meadows, A. Shaw, N. Vianello, L. Barrera Orte, Tomas Markovic, A. Fil, A. S. Couchman, Inessa Bolshakova, J. Fyvie, Konstantina Mergia, J. Gallagher, R.V. Budny, Frank Leipold, C. J. Rapson, R. C. Lobel, Gennady V. Miloshevsky, K.-D. Zastrow, Ph. Duckworth, Gianluca Rubino, G. Withenshaw, S. Maruyama, S. P. Hallworth Cook, M. Newman, Jérôme Bucalossi, P. Drewelow, Nuno Cruz, D. Iglesias, I. Nedzelski, T. Donne, P. Leichuer, R. Cesario, M. D. J. Bright, T. Boyce, N. Imazawa, Per Petersson, R. King, A. Loving, L. Garzotti, Jorge Ferreira, G. Corrigan, D. Sandiford, B. Tal, P. Puglia, Daniel Tegnered, J. Karhunen, James S. Wright, Tom Wauters, J. McKehon, K. Rathod, Olivier Février, Alessandro Formisano, Petra Bilkova, M. Groth, Ricardo Magnus Osorio Galvao, F. Medina, S. Collins, H. J. Boyer, Elena Bruno, Horacio Fernandes, M. J. Stead, R. Paccagnella, J. Kaniewski, Ion E. Stamatelatos, F. Causa, M. F. F. Nave, A. Patel, D. C. McDonald, L. Moreira, Mariano Ruiz, K. Dylst, Raymond A. Shaw, A. Brett, Jane Johnston, P. P. Pereira Puglia, J. Ongena, N. A. Benterman, V. N. Amosov, Christian Grisolia, J. Simpson, C. Perez von Thun, Jan Weiland, P. Tonner, F. Belli, T. Odupitan, T. Dittmar, Edmund Highcock, Taina Kurki-Suonio, I. Uytdenhouwen, Estelle Gauthier, M. Oberkofler, B. Alper, Iris D. Young, S. Soare, Yuji Hatano, D. Reece, D. Borodin, M. Moneti, W. Yanling, S. Mianowski, K. Fenton, Stephen J. Bailey, R. Coelho, Sandra C. Chapman, E. Łaszyńska, A. R. Field, F.J. Martínez, Anders Nielsen, M. Smithies, M. J. Mantsinen, A. J. Capel, N. D. Smith, A. Pires dos Reis, M.-L. Mayoral, T. Loarer, P. Carman, N. Grazier, S. Breton, J. M. A. Bradshaw, Alexandre C. Pereira, Fulvio Auriemma, Fulvio Militello, Barbara Cannas, D. Ulyatt, A. Kappatou, P. Blatchford, R. Scannell, B. I. Oswuigwe, Darren Price, Robert E. Grove, D. Guard, M. Leyland, G. Stubbs, J. W. Banks, V.V. Plyusnin, M. S. J. Rainford, Andrea Murari, Sanjeev Ranjan, A. Huber, V. Krasilnikov, C. Bower, H. Leggate, S. Abduallev, P. Tsavalas, G. Giruzzi, K. Maczewa, Colin Roach, P. Beaumont, R. P. Johnson, Anna Widdowson, L. A. Kogan, A. Baron Wiechec, Markus Airila, J. Morris, Robert Skilton, Katarzyna Słabkowska, M. A. Barnard, Jean-Paul Booth, Alessandro Pau, R. Price, R. Bament, M. Tokitani, I. Turner, T. Vu, P. Huynh, S.N. Gerasimov, D. I. Refy, Yunfeng Liang, Anders Hjalmarsson, S. Dalley, Roberto Ambrosino, O. Hemming, T. R. Blackman, Y. Zhou, Vasile Zoita, P. Vincenzi, A. Loarte, C. Rayner, Martin Imrisek, M. Tripsky, C. Mazzotta, A. Uccello, V. Basiuk, Lide Yao, V. Goloborod'ko, S. Villari, B. P. Duval, N. Bulmer, W. Zhang, L. Hackett, D. N. Borba, M. Halitovs, Mario Pillon, H. Arnichand, Alberto Alfier, A. Lawson, A. Masiello, T. Makkonen, A. Vitins, D. Rendell, D. Paton, L. Avotina, A. Krivska, M. Maslov, Richard Verhoeven, Marc Goniche, A. Broslawski, Marica Rebai, E. de la Luna, E. Militello-Asp, V. Cocilovo, L. Carraro, Michael Fitzgerald, Bernardo B. Carvalho, D. Young, C.G. Lowry, F. J. Casson, L.-G. Eriksson, T. M. Biewer, B. Esposito, F.G. Rimini, J. Fessey, G. Kaveney, S. Hall, Robin Barnsley, Michael Lehnen, N. Bekris, L. F. Ruchko, P. Batistoni, E. Alessi, M. G. O'Mullane, D. S. Darrow, C. N. Grundy, N. Hayter, Ivo S. Carvalho, M. Brombin, Enrico Zilli, M. Valisa, M. Reich, S. Panja, C. Gurl, Charles Harrington, Emmanuele Peluso, M. Porton, Michael Walsh, D. Falie, A. Reed, Jacob Eriksson, P. Macheta, J. M. Faustin, S. Cortes, S. Fietz, P. Piovesan, D. Ciric, Eric Nardon, R. Neu, Bojiang Ding, G.A. Rattá, F. Reimold, R. Craven, M. Cox, J. Orszagh, Aaro Järvinen, A. S. Thrysøe, A. Shepherd, I. Ďuran, Andrew M. Edwards, A. Kinch, J. Beal, M. Gherendi, Martin Köppen, D. Samaddar, P. Dalgliesh, I. Vinyar, J. Jansons, Nengchao Wang, J. Wu, John Wright, S. Wiesen, C. King, Alessandra Fanni, L. D. Horton, N. Krawczyk, J. Buch, K. Krieger, Václav Petržílka, D. Schworer, C. Watts, T. Keenan, Andrea Malizia, B. D. Stevens, P. Trimble, C. P. Lungu, V. Prajapati, Marco Ariola, C. Wellstood, S. Gilligan, Mirko Salewski, Michael Barnes, Florin Spineanu, H. Doerk, C. Kennedy, S. Jachmich, J. Caumont, Isabel L. Nunes, A. Petre, A. Kallenbach, M. Anghel, B. Lomanowski, Marco Riva, M. Romanelli, G. De Masi, T. May-Smith, T. Xu, A. Goussarov, S. Romanelli, M. Okabayashi, A. Baker, R. Salmon, T. Tala, Nicolas Fedorczak, S. Lanthaler, Giuliana Sias, J. Risner, Clarisse Bourdelle, M. E. Manso, Fabio Moro, R. Lucock, M. Bassan, M. T. Ogawa, V. Thompson, A. M. Whitehead, S. D. A. Reyes Cortes, Igor Bykov, Gennady Sergienko, E. Stefanikova, Mattia Frasca, H. Dabirikhah, Lorenzo Frassinetti, N. Dzysiuk, D. L. Keeling, Juan Manuel López, M. Turnyanskiy, Daniel Dunai, David Taylor, Arturo Buscarino, Carolina Björkas, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, M. Hill, Gwyndaf Evans, S. Minucci, Xiang Gao, A. V. Chankin, Francesco Romanelli, A. Lahtinen, L. Giacomelli, A. Owen, Jesús Vega, Jonathan Citrin, Antti Hakola, Petr Vondracek, Sehyun Kwak, P. Abreu, L. Meneses, S. S. Medley, G. Gervasini, Surya K. Pathak, Kristel Crombé, M. Cleverly, H.S. Kim, C. Stan-Sion, Nobuyuki Asakura, E. Wang, A. Cardinali, L. Fazendeiro, R. Cavazzana, P. J. Lomas, J. Hawes, G. Stables, Silvia Spagnolo, S. P. Hotchin, N. R. Green, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, Linwei Li, Rajnikant Makwana, Richard Goulding, I. Voitsekhovitch, M. Bowden, I. Kodeli, Peter Hawkins, S. S. Henderson, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, N. Ben Ayed, Mario Cavinato, M. Goodliffe, C. Clements, D. Kenny, Axel Klix, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, Min-Gu Yoo, S. Menmuir, K. Cave-Ayland, S. Potzel, D. Grist, K. Blackman, S. A. Robinson, Rodney Walker, David Pfefferlé, W. Broeckx, D. Harting, S. G. J. Tyrrell, F. Binda, L. Horvath, Davide Flammini, P. V. Edappala, Raul Moreno, G. M. D. Hogeweij, P. Card, A. Hagar, Ion Tiseanu, Rita Lorenzini, L. Appel, Jet Contributors, J. Flanagan, C. Paz Soldan, U. Samm, Otto Asunta, F. Eriksson, C. Taliercio, F. S. Zaitsev, G. F. Matthews, Tuomas Koskela, P. J. Howarth, D. Terranova, M. Skiba, Amanda Hubbard, R. Otin, K. G. McClements, M. Park, R. McKean, C. Christopher Klepper, I. Karnowska, Peter J. Pool, G. Ciraolo, Jennifer M. Lehmann, Institut de Mécanique des Fluides et des Solides (IMFS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), VTT Technical Research Centre of Finland (VTT), Association EURATOM-TEKES, Association EURATOM-TEKES, Helsinki University of Technology, Finland, Assoc. Euratom-ENEA-CREATE, Universita Mediterranea of Reggio Calabria [Reggio Calabria], EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Instituto Tecnológico e Nuclear (ITN), ITN, University of Naples Federico II = Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Università degli studi di Catania = University of Catania (Unict), National Institute for Fusion Science (NIFS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ITER organization (ITER), Karlsruhe Institute of Technology (KIT), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), Institut d'ophtalmologie Hédi-Rais de Tunis, Service Cardiologie [CHU Toulouse], Pôle Cardiovasculaire et Métabolique [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), H. Niewodniczanski Institute of Nuclear Physics, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA), École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Magnetic Sensor laboratory [Lviv] (MSL), National Polytechnic University of Lviv (LPNU), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Institute of Energy and Climate Research - Plasma Physics (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute for Problems of Material Science, National Academy of Sciences of Ukraine (NASU), Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] (CAS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Department of Hydraulics, Transportations and Roads, Laboratoire de microbiologie et génétique moléculaires - UMR5100 (LMGM), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Metallurgical & Materials Engineering Department (MS 388), University of Nevada [Reno], AUTRES, Institute of Plasma Physics and Laser Microfusion [Warsaw] (IPPLM), Culham Centre for Fusion Energy (CCFE), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), School of Mathematics [Cardiff], Cardiff University, Associazone EURATOM ENEA sulla Fusione, EURATOM, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Paul-Drude-Institut für Festkörperelektronik (PDI), Institut für Physik, University of Basel (Unibas), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Dutch Institute for Fundamental Energy Research [Eindhoven] (DIFFER), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Dipartimento di Energia [Milano], Politecnico di Milano [Milan] (POLIMI), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Lille économie management - UMR 9221 (LEM), Université d'Artois (UA)-Université catholique de Lille (UCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Euratom research and training programme 633053, Institut de Mécanique des Fluides et des Solides ( IMFS ), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique ( CNRS ), VTT Technical Research Centre of Finland ( VTT ), Univ. Mediterranea RC, Culham Science Centre, Instituto Tecnológico e Nuclear ( ITN ), Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] ( IPP ), Università degli studi di Catania [Catania], National Institute for Fusion Science, National Institutes of Natural Sciences, Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), School of Geography, Earth and Environmental Sciences, ITER Organization, Karlsruhe Institute of Technology ( KIT ), Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU ), Service de cardiologie [Toulouse], Université Paul Sabatier - Toulouse 3 ( UPS ) -CHU Toulouse [Toulouse]-Hôpital de Rangueil, ITER [St. Paul-lez-Durance], ITER, Polska Akademia Nauk ( PAN ), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique ( LHEEA ), École Centrale de Nantes ( ECN ) -Centre National de la Recherche Scientifique ( CNRS ), MSL, Lviv Polytechnic National University ( MSL ), Lviv Polytechnic National University, Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Energy and Climate Research - Plasma Physics ( IEK-4 ), Forschungszentrum Jülich GmbH, National Academy of Sciences of Ukraine ( NASU ), Lille - Economie et Management ( LEM ), Université catholique de Lille ( UCL ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Czech Academy of Sciences [Prague] ( ASCR ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Département Méthodes et Modèles Mathématiques pour l'Industrie ( 3MI-ENSMSE ), École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris]-Centre G2I, Laboratoire de microbiologie et génétique moléculaires ( LMGM ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), University of Nevada, Institute of Plasma Physics and Laser Microfusion [Warsaw] ( IPPLM ), UCL Department of Space and Climate Physics, University College of London [London] ( UCL ), Astrophysics Research Centre [Belfast] ( ARC ), Queen's University [Belfast] ( QUB ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Cardiff School of Mathematics, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS ( LPP ERM KMS ), Ecole Royale Militaire / Koninklijke Militaire School ( ERM KMS ), Paul-Drude-Institut für Festkörperelektronik, University of Basel ( Unibas ), Dutch Institute for Fundamental Energy Research [Nieuwegein] ( DIFFER ), Dutch Institute for Fundamental Energy Research [Eindhoven] ( DIFFER ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Dipartimento di Energia, Politecnico di Milano [Milan], Max Planck Institute for Plasma Physics, Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, JET Contributors, Litaudon, X, Abduallev, S, Abhangi, M, Abreu, P, Afzal, M, Aggarwal, K, Ahlgren, T, Ahn, J, Aho Mantila, L, Aiba, N, Airila, M, Albanese, R, Aldred, V, Alegre, D, Alessi, E, Aleynikov, P, Alfier, A, Alkseev, A, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amicucci, L, Amosov, V, Andersson Sundén, E, Angelone, M, Anghel, M, Angioni, C, Appel, L, Appelbee, C, Arena, P, Ariola, M, Arnichand, H, Arshad, S, Ash, A, Ashikawa, N, Aslanyan, V, Asunta, O, Auriemma, F, Austin, Y, Avotina, L, Axton, M, Ayres, C, Bacharis, M, Baciero, A, Baiã¡o, D, Bailey, S, Baker, A, Balboa, I, Balden, M, Balshaw, N, Bament, R, Banks, J, Baranov, Y, Barnard, M, Barnes, D, Barnes, M, Barnsley, R, Baron Wiechec, A, Barrera Orte, L, Baruzzo, M, Basiuk, V, Bassan, M, Bastow, R, Batista, A, Batistoni, P, Baughan, R, Bauvir, B, Baylor, L, Bazylev, B, Beal, J, Beaumont, P, Beckers, M, Beckett, B, Becoulet, A, Bekris, N, Beldishevski, M, Bell, K, Belli, F, Bellinger, M, Belonohy, Ã, Ben Ayed, N, Benterman, N, Bergsã¥ker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Besliu, C, Beurskens, M, Bieg, B, Bielecki, J, Biewer, T, Bigi, M, Bãlkovã¡, P, Binda, F, Bisoffi, A, Bizarro, J, Bjã¶rkas, C, Blackburn, J, Blackman, K, Blackman, T, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bodnã¡r, G, Bogar, O, Bolshakova, I, Bolzonella, T, Bonanomi, N, Bonelli, F, Boom, J, Booth, J, Borba, D, Borodin, D, Borodkina, I, Botrugno, A, Bottereau, C, Boulting, P, Bourdelle, C, Bowden, M, Bower, C, Bowman, C, Boyce, T, Boyd, C, Boyer, H, Bradshaw, J, Braic, V, Bravanec, R, Breizman, B, Bremond, S, Brennan, P, Breton, S, Brett, A, Brezinsek, S, Bright, M, Brix, M, Broeckx, W, Brombin, M, Broså‚awski, A, Brown, D, Brown, M, Bruno, E, Bucalossi, J, Buch, J, Buchanan, J, Buckley, M, Budny, R, Bufferand, H, Bulman, M, Bulmer, N, Bunting, P, Buratti, P, Burckhart, A, Buscarino, A, Busse, A, Butler, N, Bykov, I, Byrne, J, Cahyna, P, Calabrã², G, Calvo, I, Camenen, Y, Camp, P, Campling, D, Cane, J, Cannas, B, Capel, A, Card, P, Cardinali, A, Carman, P, Carr, M, Carralero, D, Carraro, L, Carvalho, B, Carvalho, I, Carvalho, P, Casson, F, Castaldo, C, Catarino, N, Caumont, J, Causa, F, Cavazzana, R, Cave Ayland, K, Cavinato, M, Cecconello, M, Ceccuzzi, S, Cecil, E, Cenedese, A, Cesario, R, Challis, C, Chandler, M, Chandra, D, Chang, C, Chankin, A, Chapman, I, Chapman, S, Chernyshova, M, Chitarin, G, Ciraolo, G, Ciric, D, Citrin, J, Clairet, F, Clark, E, Clark, M, Clarkson, R, Clatworthy, D, Clements, C, Cleverly, M, Coad, J, Coates, P, Cobalt, A, Coccorese, V, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Collins, S, Conka, D, Conroy, S, Conway, N, Coombs, D, Cooper, D, Cooper, S, Corradino, C, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Couchman, A, Cox, M, Craciunescu, T, Cramp, S, Craven, R, Crisanti, F, Croci, G, Croft, D, Crombã©, K, Crowe, R, Cruz, N, Cseh, G, Cufar, A, Cullen, A, Curuia, M, Czarnecka, A, Dabirikhah, H, Dalgliesh, P, Dalley, S, Dankowski, J, Darrow, D, Davies, O, Davis, W, Day, C, Day, I, De Bock, M, De Castro, A, De La Cal, E, De La Luna, E, De Masi, G, De Pablos, J, De Temmerman, G, De Tommasi, G, De Vries, P, Deakin, K, Deane, J, Degli Agostini, F, Dejarnac, R, Delabie, E, Den Harder, N, Dendy, R, Denis, J, Denner, P, Devaux, S, Devynck, P, Di Maio, F, Di Siena, A, Di Troia, C, Dinca, P, D'Inca, R, Ding, B, Dittmar, T, Doerk, H, Doerner, R, Donnã©, T, Dorling, S, Dormido Canto, S, Doswon, S, Douai, D, Doyle, P, Drenik, A, Drewelow, P, Drews, P, Duckworth, P, Dumont, R, Dumortier, P, Dunai, D, Dunne, M, Äžuran, I, Durodiã©, F, Dutta, P, Duval, B, Dux, R, Dylst, K, Dzysiuk, N, Edappala, P, Edmond, J, Edwards, A, Edwards, J, Eich, T, Ekedahl, A, El Jorf, R, Elsmore, C, Enachescu, M, Ericsson, G, Eriksson, F, Eriksson, J, Eriksson, L, Esposito, B, Esquembri, S, Esser, H, Esteve, D, Evans, B, Evans, G, Evison, G, Ewart, G, Fagan, D, Faitsch, M, Falie, D, Fanni, A, Fasoli, A, Faustin, J, Fawlk, N, Fazendeiro, L, Fedorczak, N, Felton, R, Fenton, K, Fernades, A, Fernandes, H, Ferreira, J, Fessey, J, Fã©vrier, O, Ficker, O, Field, A, Fietz, S, Figueiredo, A, Figueiredo, J, Fil, A, Finburg, P, Firdaouss, M, Fischer, U, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Fleming, C, Flinders, K, Fonnesu, N, Fontdecaba, J, Formisano, A, Forsythe, L, Fortuna, L, Fortuna Zalesna, E, Fortune, M, Foster, S, Franke, T, Franklin, T, Frasca, M, Frassinetti, L, Freisinger, M, Fresa, R, Frigione, D, Fuchs, V, Fuller, D, Futatani, S, Fyvie, J, Gã¡l, K, Galassi, D, Gaå‚azka, K, Galdon Quiroga, J, Gallagher, J, Gallart, D, Galvã¡o, R, Gao, X, Gao, Y, Garcia, J, Garcia Carrasco, A, GarcÃa Muñoz, M, Gardarein, J, Garzotti, L, Gaudio, P, Gauthier, E, Gear, D, Gee, S, Geiger, B, Gelfusa, M, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Ghate, M, Gherendi, M, Giacalone, J, Giacomelli, L, Gibson, C, Giegerich, T, Gil, C, Gil, L, Gilligan, S, Gin, D, Giovannozzi, E, Girardo, J, Giroud, C, Giruzzi, G, Glã¶ggler, S, Godwin, J, Goff, J, Gohil, P, Goloborod'Ko, V, Gomes, R, Goncalves, B, Goniche, M, Goodliffe, M, Goodyear, A, Gorini, G, Gosk, M, Goulding, R, Goussarov, A, Gowland, R, Graham, B, Graham, M, Graves, J, Grazier, N, Grazier, P, Green, N, Greuner, H, Grierson, B, Griph, F, Grisolia, C, Grist, D, Groth, M, Grove, R, Grundy, C, Grzonka, J, Guard, D, Guã©rard, C, Guillemaut, C, Guirlet, R, Gurl, C, Utoh, H, Hackett, L, Hacquin, S, Hagar, A, Hager, R, Hakola, A, Halitovs, M, Hall, S, Hallworth Cook, S, Hamlyn Harris, C, Hammond, K, Harrington, C, Harrison, J, Harting, D, Hasenbeck, F, Hatano, Y, Hatch, D, Haupt, T, Hawes, J, Hawkes, N, Hawkins, J, Hawkins, P, Haydon, P, Hayter, N, Hazel, S, Heesterman, P, Heinola, K, Hellesen, C, Hellsten, T, Helou, W, Hemming, O, Hender, T, Henderson, M, Henderson, S, Henriques, R, Hepple, D, Hermon, G, Hertout, P, Hidalgo, C, Highcock, E, Hill, M, Hillairet, J, Hillesheim, J, Hillis, D, Hizanidis, K, Hjalmarsson, A, Hobirk, J, Hodille, E, Hogben, C, Hogeweij, G, Hollingsworth, A, Hollis, S, Homfray, D, Horã¡ä ek, J, Hornung, G, Horton, A, Horton, L, Horvath, L, Hotchin, S, Hough, M, Howarth, P, Hubbard, A, Huber, A, Huber, V, Huddleston, T, Hughes, M, Huijsmans, G, Hunter, C, Huynh, P, Hynes, A, Iglesias, D, Imazawa, N, Imbeaux, F, Imrãå¡ek, M, Incelli, M, Innocente, P, Irishkin, M, Ivanova Stanik, I, Jachmich, S, Jacobsen, A, Jacquet, P, Jansons, J, Jardin, A, Jã¤rvinen, A, Jaulmes, F, Jednorã³g, S, Jenkins, I, Jeong, C, Jepu, I, Joffrin, E, Johnson, R, Johnson, T, Johnston, J, Joita, L, Jones, G, Jones, T, Hoshino, K, Kallenbach, A, Kamiya, K, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Karnowska, I, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, D, Keenan, T, Keep, J, Kempenaars, M, Kennedy, C, Kenny, D, Kent, J, Kent, O, Khilkevich, E, Kim, H, Kinch, A, King, C, King, D, King, R, Kinna, D, Kiptily, V, Kirk, A, Kirov, K, Kirschner, A, Kizane, G, Klepper, C, Klix, A, Knight, P, Knipe, S, Knott, S, Kobuchi, T, Kã¶chl, F, Kocsis, G, Kodeli, I, Kogan, L, Kogut, D, Koivuranta, S, Kominis, Y, Kã¶ppen, M, Kos, B, Koskela, T, Koslowski, H, Koubiti, M, Kovari, M, Kowalska StrzÈ©ciwilk, E, Krasilnikov, A, Krasilnikov, V, Krawczyk, N, Kresina, M, Krieger, K, Krivska, A, Kruezi, U, Ksiaå¼ek, I, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kwak, S, Kwiatkowski, R, Kwon, O, Laguardia, L, Lahtinen, A, Laing, A, Lam, N, Lambertz, H, Lane, C, Lang, P, Lanthaler, S, Lapins, J, Lasa, A, Last, J, Å aszyå„ska, E, Lawless, R, Lawson, A, Lawson, K, Lazaros, A, Lazzaro, E, Leddy, J, Lee, S, Lefebvre, X, Leggate, H, Lehmann, J, Lehnen, M, Leichtle, D, Leichuer, P, Leipold, F, Lengar, I, Lennholm, M, Lerche, E, Lescinskis, A, Lesnoj, S, Letellier, E, Leyland, M, Leysen, W, Li, L, Liang, Y, Likonen, J, Linke, J, Linsmeier, C, Lipschultz, B, Liu, G, Liu, Y, Lo Schiavo, V, Loarer, T, Loarte, A, Lobel, R, Lomanowski, B, Lomas, P, Lã¶nnroth, J, Lã³pez, J, López Razola, J, Lorenzini, R, Losada, U, Lovell, J, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukin, A, Luna, C, Lungaroni, M, Lungu, C, Lungu, M, Lunniss, A, Lupelli, I, Lyssoivan, A, Macdonald, N, Macheta, P, Maczewa, K, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makwana, R, Malaquias, A, Malizia, A, Manas, P, Manning, A, Manso, M, Mantica, P, Mantsinen, M, Manzanares, A, Maquet, P, Marandet, Y, Marcenko, N, Marchetto, C, Marchuk, O, Marinelli, M, Marinucci, M, Markoviä , T, Marocco, D, Marot, L, Marren, C, Marshal, R, Martin, A, Martin, Y, MartÃn De Aguilera, A, Martãnez, F, MartÃn SolÃs, J, Martynova, Y, Maruyama, S, Masiello, A, Maslov, M, Matejcik, S, Mattei, M, Matthews, G, Maviglia, F, Mayer, M, Mayoral, M, May Smith, T, Mazon, D, Mazzotta, C, Mcadams, R, Mccarthy, P, Mcclements, K, Mccormack, O, Mccullen, P, Mcdonald, D, Mcintosh, S, Mckean, R, Mckehon, J, Meadows, R, Meakins, A, Medina, F, Medland, M, Medley, S, Meigh, S, Meigs, A, Meisl, G, Meitner, S, Meneses, L, Menmuir, S, Mergia, K, Merrigan, I, Mertens, P, Meshchaninov, S, Messiaen, A, Meyer, H, Mianowski, S, Michling, R, Middleton Gear, D, Miettunen, J, Militello, F, Militello Asp, E, Miloshevsky, G, Mink, F, Minucci, S, Miyoshi, Y, Mlynã¡å™, J, Molina, D, Monakhov, I, Moneti, M, Mooney, R, Moradi, S, Mordijck, S, Moreira, L, Moreno, R, Moro, F, Morris, A, Morris, J, Moser, L, Mosher, S, Moulton, D, Murari, A, Muraro, A, Murphy, S, Asakura, N, Na, Y, Nabais, F, Naish, R, Nakano, T, Nardon, E, Naulin, V, Nave, M, Nedzelski, I, Nemtsev, G, Nespoli, F, Neto, A, Neu, R, Neverov, V, Newman, M, Nicholls, K, Nicolas, T, Nielsen, A, Nielsen, P, Nilsson, E, Nishijima, D, Noble, C, Nocente, M, Nodwell, D, Nordlund, K, Nordman, H, Nouailletas, R, Nunes, I, Oberkofler, M, Odupitan, T, Ogawa, M, O'Gorman, T, Okabayashi, M, Olney, R, Omolayo, O, O'Mullane, M, Ongena, J, Orsitto, F, Orszagh, J, Oswuigwe, B, Otin, R, Owen, A, Paccagnella, R, Pace, N, Pacella, D, Packer, L, Page, A, Pajuste, E, Palazzo, S, Pamela, S, Panja, S, Papp, P, Paprok, R, Parail, V, Park, M, Parra Diaz, F, Parsons, M, Pasqualotto, R, Patel, A, Pathak, S, Paton, D, Patten, H, Pau, A, Pawelec, E, Paz Soldan, C, Peackoc, A, Pearson, I, Pehkonen, S, Peluso, E, Penot, C, Pereira, A, Pereira, R, Pereira Puglia, P, Perez Von Thun, C, Peruzzo, S, Peschanyi, S, Peterka, M, Petersson, P, Petravich, G, Petre, A, Petrella, N, Petrå¾ilka, V, Peysson, Y, Pfefferlã©, D, Philipps, V, Pillon, M, Pintsuk, G, Piovesan, P, Pires Dos Reis, A, Piron, L, Pironti, A, Pisano, F, Pitts, R, Pizzo, F, Plyusnin, V, Pomaro, N, Pompilian, O, Pool, P, Popovichev, S, Porfiri, M, Porosnicu, C, Porton, M, Possnert, G, Potzel, S, Powell, T, Pozzi, J, Prajapati, V, Prakash, R, Prestopino, G, Price, D, Price, M, Price, R, Prior, P, Proudfoot, R, Pucella, G, Puglia, P, Puiatti, M, Pulley, D, Purahoo, K, Pã¼tterich, T, Rachlew, E, Rack, M, Ragona, R, Rainford, M, Rakha, A, Ramogida, G, Ranjan, S, Rapson, C, Rasmussen, J, Rathod, K, Rattã¡, G, Ratynskaia, S, Ravera, G, Rayner, C, Rebai, M, Reece, D, Reed, A, Rã©fy, D, Regan, B, Regaã±a, J, Reich, M, Reid, N, Reimold, F, Reinhart, M, Reinke, M, Reiser, D, Rendell, D, Reux, C, Reyes Cortes, S, Reynolds, S, Riccardo, V, Richardson, N, Riddle, K, Rigamonti, D, Rimini, F, Risner, J, Riva, M, Roach, C, Robins, R, Robinson, S, Robinson, T, Robson, D, Roccella, R, Rodionov, R, Rodrigues, P, Rodriguez, J, Rohde, V, Romanelli, F, Romanelli, M, Romanelli, S, Romazanov, J, Rowe, S, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruiz, M, Ruset, C, Rzadkiewicz, J, Saarelma, S, Sabot, R, Safi, E, Sagar, P, Saibene, G, Saint Laurent, F, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Samaddar, D, Samm, U, Sandiford, D, Santa, P, Santala, M, Santos, B, Santucci, A, Sartori, F, Sartori, R, Sauter, O, Scannell, R, Schlummer, T, Schmid, K, Schmidt, V, Schmuck, S, Schneider, M, Schã¶pf, K, Schwã¶rer, D, Scott, S, Sergienko, G, Sertoli, M, Shabbir, A, Sharapov, S, Shaw, A, Shaw, R, Sheikh, H, Shepherd, A, Shevelev, A, Shumack, A, Sias, G, Sibbald, M, Sieglin, B, Silburn, S, Silva, A, Silva, C, Simmons, P, Simpson, J, Simpson Hutchinson, J, Sinha, A, Sipilã¤, S, Sips, A, Sirã©n, P, Sirinelli, A, Sjã¶strand, H, Skiba, M, Skilton, R, Slabkowska, K, Slade, B, Smith, N, Smith, P, Smith, R, Smith, T, Smithies, M, Snoj, L, Soare, S, Solano, E, Somers, A, Sommariva, C, Sonato, P, Sopplesa, A, Sousa, J, Sozzi, C, Spagnolo, S, Spelzini, T, Spineanu, F, Stables, G, Stamatelatos, I, Stamp, M, Staniec, P, Stankå«nas, G, Stan Sion, C, Stead, M, Stefanikova, E, Stepanov, I, Stephen, A, Stephen, M, Stevens, A, Stevens, B, Strachan, J, Strand, P, Strauss, H, Strã¶m, P, Stubbs, G, Studholme, W, Subba, F, Summers, H, Svensson, J, Åšwiderski, Å, Szabolics, T, Szawlowski, M, Szepesi, G, Suzuki, T, Tã¡l, B, Tala, T, Talbot, A, Talebzadeh, S, Taliercio, C, Tamain, P, Tame, C, Tang, W, Tardocchi, M, Taroni, L, Taylor, D, Taylor, K, Tegnered, D, Telesca, G, Teplova, N, Terranova, D, Testa, D, Tholerus, E, Thomas, J, Thomas, P, Thompson, A, Thompson, C, Thompson, V, Thorne, L, Thornton, A, Thrysã¸e, A, Tigwell, P, Tipton, N, Tiseanu, I, Tojo, H, Tokitani, M, Tolias, P, Tomeå¡, M, Tonner, P, Towndrow, M, Trimble, P, Tripsky, M, Tsalas, M, Tsavalas, P, Tskhakaya Jun, D, Turner, I, Turner, M, Turnyanskiy, M, Tvalashvili, G, Tyrrell, S, Uccello, A, Ul Abidin, Z, Uljanovs, J, Ulyatt, D, Urano, H, Uytdenhouwen, I, Vadgama, A, Valcarcel, D, Valentinuzzi, M, Valisa, M, Vallejos Olivares, P, Valovic, M, Van De Mortel, M, Van Eester, D, Van Renterghem, W, Van Rooij, G, Varje, J, Varoutis, S, Vartanian, S, Vasava, K, Vasilopoulou, T, Vega, J, Verdoolaege, G, Verhoeven, R, Verona, C, Verona Rinati, G, Veshchev, E, Vianello, N, Vicente, J, Viezzer, E, Villari, S, Villone, F, Vincenzi, P, Vinyar, I, Viola, B, Vitins, A, Vizvary, Z, Vlad, M, Voitsekhovitch, I, Vondrã¡ä ek, P, Vora, N, Vu, T, Pires De Sa, W, Wakeling, B, Waldon, C, Walkden, N, Walker, M, Walker, R, Walsh, M, Wang, E, Wang, N, Warder, S, Warren, R, Waterhouse, J, Watkins, N, Watts, C, Wauters, T, Weckmann, A, Weiland, J, Weisen, H, Weiszflog, M, Wellstood, C, West, A, Wheatley, M, Whetham, S, Whitehead, A, Whitehead, B, Widdowson, A, Wiesen, S, Wilkinson, J, Williams, J, Williams, M, Wilson, A, Wilson, D, Wilson, H, Wilson, J, Wischmeier, M, Withenshaw, G, Withycombe, A, Witts, D, Wood, D, Wood, R, Woodley, C, Wray, S, Wright, J, Wu, J, Wukitch, S, Wynn, A, Xu, T, Yadikin, D, Yanling, W, Yao, L, Yavorskij, V, Yoo, M, Young, C, Young, D, Young, I, Young, R, Zacks, J, Zagorski, R, Zaitsev, F, Zanino, R, Zarins, A, Zastrow, K, Zerbini, M, Zhang, W, Zhou, Y, Zilli, E, Zoita, V, Zoletnik, S, Zychor, I, Materials Physics, Department of Physics, European Commission, Litaudon, X., Abduallev, S., Abhangi, M., Abreu, P., Afzal, M., Aggarwal, K. M., Ahlgren, T., Ahn, J. H., Aho-Mantila, L., Aiba, N., Airila, M., Albanese, R., Aldred, V., Alegre, D., Alessi, E., Aleynikov, P., Alfier, A., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amicucci, L., Amosov, V., Andersson Sundén, E., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arnichand, H., Arshad, S., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M. D., Ayres, C., Bacharis, M., Baciero, A., Baião, D., Bailey, S., Baker, A., Balboa, I., Balden, M., Balshaw, N., Bament, R., Banks, J. W., Baranov, Y. F., Barnard, M. A., Barnes, D., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baughan, R., Bauvir, B., Baylor, L., Bazylev, B., Beal, J., Beaumont, P. S., Beckers, M., Beckett, B., Becoulet, A., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Bellinger, M., Belonohy, É., Ben Ayed, N., Benterman, N. A., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besliu, C., Beurskens, M., Bieg, B., Bielecki, J., Biewer, T., Bigi, M., Bílková, P., Binda, F., Bisoffi, A., Bizarro, J. P. S., Björkas, C., Blackburn, J., Blackman, K., Blackman, T. R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bodnár, G., Bogar, O., Bolshakova, I., Bolzonella, T., Bonanomi, N., Bonelli, F., Boom, J., Booth, J., Borba, D., Borodin, D., Borodkina, I., Botrugno, A., Bottereau, C., Boulting, P., Bourdelle, C., Bowden, M., Bower, C., Bowman, C., Boyce, T., Boyd, C., Boyer, H. J., Bradshaw, J. M. A., Braic, V., Bravanec, R., Breizman, B., Bremond, S., Brennan, P. D., Breton, S., Brett, A., Brezinsek, S., Bright, M. D. J., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, D. P. D., Brown, M., Bruno, E., Bucalossi, J., Buch, J., Buchanan, J., Buckley, M. A., Budny, R., Bufferand, H., Bulman, M., Bulmer, N., Bunting, P., Buratti, P., Burckhart, A., Buscarino, A., Busse, A., Butler, N. K., Bykov, I., Byrne, J., Cahyna, P., Calabrò, G., Calvo, I., Camenen, Y., Camp, P., Campling, D. C., Cane, J., Cannas, B., Capel, A. J., Card, P. J., Cardinali, A., Carman, P., Carr, M., Carralero, D., Carraro, L., Carvalho, B. B., Carvalho, I., Carvalho, P., Casson, F. J., Castaldo, C., Catarino, N., Caumont, J., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavinato, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Cenedese, A., Cesario, R., Challis, C. D., Chandler, M., Chandra, D., Chang, C. S., Chankin, A., Chapman, I. T., Chapman, S. C., Chernyshova, M., Chitarin, G., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, E., Clark, M., Clarkson, R., Clatworthy, D., Clements, C., Cleverly, M., Coad, J. P., Coates, P. A., Cobalt, A., Coccorese, V., Cocilovo, V., Coda, S., Coelho, R., Coenen, J. W., Coffey, I., Colas, L., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, D., Cooper, S. R., Corradino, C., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Couchman, A. S., Cox, M. P., Craciunescu, T., Cramp, S., Craven, R., Crisanti, F., Croci, G., Croft, D., Crombé, K., Crowe, R., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curuia, M., Czarnecka, A., Dabirikhah, H., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., Davies, O., Davis, W., Day, C., Day, I. E., De Bock, M., de Castro, A., de la Cal, E., de la Luna, E., De Masi, G., de Pablos, J. L., De Temmerman, G., De Tommasi, G., de Vries, P., Deakin, K., Deane, J., Degli Agostini, F., Dejarnac, R., Delabie, E., den Harder, N., Dendy, R. O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dinca, P., D’Inca, R., Ding, B., Dittmar, T., Doerk, H., Doerner, R. P., Donné, T., Dorling, S. E., Dormido-Canto, S., Doswon, S., Douai, D., Doyle, P. T., Drenik, A., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B. P., Dux, R., Dylst, K., Dzysiuk, N., Edappala, P. V., Edmond, J., Edwards, A. M., Edwards, J., Eich, Th., Ekedahl, A., El-Jorf, R., Elsmore, C. G., Enachescu, M., Ericsson, G., Eriksson, F., Eriksson, J., Eriksson, L. G., Esposito, B., Esquembri, S., Esser, H. G., Esteve, D., Evans, B., Evans, G. E., Evison, G., Ewart, G. D., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Fasoli, A., Faustin, J. M., Fawlk, N., Fazendeiro, L., Fedorczak, N., Felton, R. C., Fenton, K., Fernades, A., Fernandes, H., Ferreira, J., Fessey, J. A., Février, O., Ficker, O., Field, A., Fietz, S., Figueiredo, A., Figueiredo, J., Fil, A., Finburg, P., Firdaouss, M., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Fleming, C., Flinders, K., Fonnesu, N., Fontdecaba, J. M., Formisano, A., Forsythe, L., Fortuna, L., Fortuna-Zalesna, E., Fortune, M., Foster, S., Franke, T., Franklin, T., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Frigione, D., Fuchs, V., Fuller, D., Futatani, S., Fyvie, J., Gál, K., Galassi, D., Gałązka, K., Galdon-Quiroga, J., Gallagher, J., Gallart, D., Galvão, R., Gao, X., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardarein, J. -L., Garzotti, L., Gaudio, P., Gauthier, E., Gear, D. F., Gee, S. J., Geiger, B., Gelfusa, M., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Giegerich, T., Gil, C., Gil, L., Gilligan, S., Gin, D., Giovannozzi, E., Girardo, J. B., Giroud, C., Giruzzi, G., Glöggler, S., Godwin, J., Goff, J., Gohil, P., Goloborod’Ko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodliffe, M., Goodyear, A., Gorini, G., Gosk, M., Goulding, R., Goussarov, A., Gowland, R., Graham, B., Graham, M. E., Graves, J. P., Grazier, N., Grazier, P., Green, N. R., Greuner, H., Grierson, B., Griph, F. S., Grisolia, C., Grist, D., Groth, M., Grove, R., Grundy, C. N., Grzonka, J., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gurl, C., Utoh, H. H., Hackett, L. J., Hacquin, S., Hagar, A., Hager, R., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamlyn-Harris, C., Hammond, K., Harrington, C., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D. R., Haupt, T. D. V., Hawes, J., Hawkes, N. C., Hawkins, J., Hawkins, P., Haydon, P. W., Hayter, N., Hazel, S., Heesterman, P. J. L., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O. N., Hender, T. C., Henderson, M., Henderson, S. S., Henriques, R., Hepple, D., Hermon, G., Hertout, P., Hidalgo, C., Highcock, E. G., Hill, M., Hillairet, J., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Hobirk, J., Hodille, E., Hogben, C. H. A., Hogeweij, G. M. D., Hollingsworth, A., Hollis, S., Homfray, D. A., Horáček, J., Hornung, G., Horton, A. R., Horton, L. D., Horvath, L., Hotchin, S. P., Hough, M. R., Howarth, P. J., Hubbard, A., Huber, A., Huber, V., Huddleston, T. M., Hughes, M., Huijsmans, G. T. A., Hunter, C. L., Huynh, P., Hynes, A. M., Iglesias, D., Imazawa, N., Imbeaux, F., Imríšek, M., Incelli, M., Innocente, P., Irishkin, M., Ivanova-Stanik, I., Jachmich, S., Jacobsen, A. S., Jacquet, P., Jansons, J., Jardin, A., Järvinen, A., Jaulmes, F., Jednoróg, S., Jenkins, I., Jeong, C., Jepu, I., Joffrin, E., Johnson, R., Johnson, T., Johnston, Jane, Joita, L., Jones, G., Jones, T. T. C., Hoshino, K. K., Kallenbach, A., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Karnowska, I., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D. L., Keenan, T., Keep, J., Kempenaars, M., Kennedy, C., Kenny, D., Kent, J., Kent, O. N., Khilkevich, E., Kim, H. T., Kim, H. S., Kinch, A., King, C., King, D., King, R. F., Kinna, D. J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klepper, C., Klix, A., Knight, P., Knipe, S. J., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Kogan, L., Kogut, D., Koivuranta, S., Kominis, Y., Köppen, M., Kos, B., Koskela, T., Koslowski, H. R., Koubiti, M., Kovari, M., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwiatkowski, R., Kwon, O. J., Laguardia, L., Lahtinen, A., Laing, A., Lam, N., Lambertz, H. T., Lane, C., Lang, P. T., Lanthaler, S., Lapins, J., Lasa, A., Last, J. R., Łaszyńska, E., Lawless, R., Lawson, A., Lawson, K. D., Lazaros, A., Lazzaro, E., Leddy, J., Lee, S., Lefebvre, X., Leggate, H. J., Lehmann, J., Lehnen, M., Leichtle, D., Leichuer, P., Leipold, F., Lengar, I., Lennholm, M., Lerche, E., Lescinskis, A., Lesnoj, S., Letellier, E., Leyland, M., Leysen, W., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Liu, G., Liu, Y., Lo Schiavo, V. P., Loarer, T., Loarte, A., Lobel, R. C., Lomanowski, B., Lomas, P. J., Lönnroth, J., López, J. M., López-Razola, J., Lorenzini, R., Losada, U., Lovell, J. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukin, A., Luna, C., Lungaroni, M., Lungu, C. P., Lungu, M., Lunniss, A., Lupelli, I., Lyssoivan, A., Macdonald, N., Macheta, P., Maczewa, K., Magesh, B., Maget, P., Maggi, C., Maier, H., Mailloux, J., Makkonen, T., Makwana, R., Malaquias, A., Malizia, A., Manas, P., Manning, A., Manso, M. E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marren, C. A., Marshal, R., Martin, A., Martin, Y., Martín de Aguilera, A., Martínez, F. J., Martín-Solís, J. R., Martynova, Y., Maruyama, S., Masiello, A., Maslov, M., Matejcik, S., Mattei, M., Matthews, G. F., Maviglia, F., Mayer, M., Mayoral, M. L., May-Smith, T., Mazon, D., Mazzotta, C., Mcadams, R., Mccarthy, P. J., Mcclements, K. G., Mccormack, O., Mccullen, P. A., Mcdonald, D., Mcintosh, S., Mckean, R., Mckehon, J., Meadows, R. C., Meakins, A., Medina, F., Medland, M., Medley, S., Meigh, S., Meigs, A. G., Meisl, G., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merrigan, I. R., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Mianowski, S., Michling, R., Middleton-Gear, D., Miettunen, J., Militello, F., Militello-Asp, E., Miloshevsky, G., Mink, F., Minucci, S., Miyoshi, Y., Mlynář, J., Molina, D., Monakhov, I., Moneti, M., Mooney, R., Moradi, S., Mordijck, S., Moreira, L., Moreno, R., Moro, F., Morris, A. W., Morris, J., Moser, L., Mosher, S., Moulton, D., Murari, A., Muraro, A., Murphy, S., Asakura, N. N., Na, Y. S., Nabais, F., Naish, R., Nakano, T., Nardon, E., Naulin, V., Nave, M. F. F., Nedzelski, I., Nemtsev, G., Nespoli, F., Neto, A., Neu, R., Neverov, V. S., Newman, M., Nicholls, K. J., Nicolas, T., Nielsen, A. H., Nielsen, P., Nilsson, E., Nishijima, D., Noble, C., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Nouailletas, R., Nunes, I., Oberkofler, M., Odupitan, T., Ogawa, M. T., O’Gorman, T., Okabayashi, M., Olney, R., Omolayo, O., O’Mullane, M., Ongena, J., Orsitto, F., Orszagh, J., Oswuigwe, B. I., Otin, R., Owen, A., Paccagnella, R., Pace, N., Pacella, D., Packer, L. W., Page, A., Pajuste, E., Palazzo, S., Pamela, S., Panja, S., Papp, P., Paprok, R., Parail, V., Park, M., Parra Diaz, F., Parsons, M., Pasqualotto, R., Patel, A., Pathak, S., Paton, D., Patten, H., Pau, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pearson, I. J., Pehkonen, S. -P., Peluso, E., Penot, C., Pereira, A., Pereira, R., Pereira Puglia, P. P., Perez von Thun, C., Peruzzo, S., Peschanyi, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petrella, N., Petržilka, V., Peysson, Y., Pfefferlé, D., Philipps, V., Pillon, M., Pintsuk, G., Piovesan, P., Pires dos Reis, A., Piron, L., Pironti, A., Pisano, F., Pitts, R., Pizzo, F., Plyusnin, V., Pomaro, N., Pompilian, O. G., Pool, P. J., Popovichev, S., Porfiri, M. T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Powell, T., Pozzi, J., Prajapati, V., Prakash, R., Prestopino, G., Price, D., Price, M., Price, R., Prior, P., Proudfoot, R., Pucella, G., Puglia, P., Puiatti, M. E., Pulley, D., Purahoo, K., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M. S. J., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C. J., Rasmussen, J. J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rayner, C., Rebai, M., Reece, D., Reed, A., Réfy, D., Regan, B., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S. D. A., Reynolds, S., Riccardo, V., Richardson, N., Riddle, K., Rigamonti, D., Rimini, F. G., Risner, J., Riva, M., Roach, C., Robins, R. J., Robinson, S. A., Robinson, T., Robson, D. W., Roccella, R., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, F., Romanelli, M., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruiz, M., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Safi, E., Sagar, P., Saibene, G., Saint-Laurent, F., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samaddar, D., Samm, U., Sandiford, D., Santa, P., Santala, M. I. K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schlummer, T., Schmid, K., Schmidt, V., Schmuck, S., Schneider, M., Schöpf, K., Schwörer, D., Scott, S. D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S. E., Shaw, A., Shaw, R., Sheikh, H., Shepherd, A., Shevelev, A., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, A., Silva, C., Simmons, P. A., Simpson, J., Simpson-Hutchinson, J., Sinha, A., Sipilä, S. K., Sips, A. C. C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Slabkowska, K., Slade, B., Smith, N., Smith, P. G., Smith, R., Smith, T. J., Smithies, M., Snoj, L., Soare, S., Solano, E. R., Somers, A., Sommariva, C., Sonato, P., Sopplesa, A., Sousa, J., Sozzi, C., Spagnolo, S., Spelzini, T., Spineanu, F., Stables, G., Stamatelatos, I., Stamp, M. F., Staniec, P., Stankūnas, G., Stan-Sion, C., Stead, M. J., Stefanikova, E., Stepanov, I., Stephen, A. V., Stephen, M., Stevens, A., Stevens, B. D., Strachan, J., Strand, P., Strauss, H. R., Ström, P., Stubbs, G., Studholme, W., Subba, F., Summers, H. P., Svensson, J., Świderski, Ł., Szabolics, T., Szawlowski, M., Szepesi, G., Suzuki, T. T., Tál, B., Tala, T., Talbot, A. R., Talebzadeh, S., Taliercio, C., Tamain, P., Tame, C., Tang, W., Tardocchi, M., Taroni, L., Taylor, D., Taylor, K. A., Tegnered, D., Telesca, G., Teplova, N., Terranova, D., Testa, D., Tholerus, E., Thomas, J., Thomas, J. D., Thomas, P., Thompson, A., Thompson, C. -A., Thompson, V. K., Thorne, L., Thornton, A., Thrysøe, A. S., Tigwell, P. A., Tipton, N., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Tonner, P., Towndrow, M., Trimble, P., Tripsky, M., Tsalas, M., Tsavalas, P., Tskhakaya jun, D., Turner, I., Turner, M. M., Turnyanskiy, M., Tvalashvili, G., Tyrrell, S. G. J., Uccello, A., Ul-Abidin, Z., Uljanovs, J., Ulyatt, D., Urano, H., Uytdenhouwen, I., Vadgama, A. P., Valcarcel, D., Valentinuzzi, M., Valisa, M., Vallejos Olivares, P., Valovic, M., Van De Mortel, M., Van Eester, D., Van Renterghem, W., van Rooij, G. J., Varje, J., Varoutis, S., Vartanian, S., Vasava, K., Vasilopoulou, T., Vega, J., Verdoolaege, G., Verhoeven, R., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Vondráček, P., Vora, N., Vu, T., Pires de Sa, W. W., Wakeling, B., Waldon, C. W. F., Walkden, N., Walker, M., Walker, R., Walsh, M., Wang, E., Wang, N., Warder, S., Warren, R. J., Waterhouse, J., Watkins, N. W., Watts, C., Wauters, T., Weckmann, A., Weiland, J., Weisen, H., Weiszflog, M., Wellstood, C., West, A. T., Wheatley, M. R., Whetham, S., Whitehead, A. M., Whitehead, B. D., Widdowson, A. M., Wiesen, S., Wilkinson, J., Williams, J., Williams, M., Wilson, A. R., Wilson, D. J., Wilson, H. R., Wilson, J., Wischmeier, M., Withenshaw, G., Withycombe, A., Witts, D. M., Wood, D., Wood, R., Woodley, C., Wray, S., Wright, J., Wright, J. C., Wu, J., Wukitch, S., Wynn, A., Xu, T., Yadikin, D., Yanling, W., Yao, L., Yavorskij, V., Yoo, M. G., Young, C., Young, D., Young, I. D., Young, R., Zacks, J., Zagorski, R., Zaitsev, F. S., Zanino, R., Zarins, A., Zastrow, K. D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zoita, V., Zoletnik, S., Zychor, I., Andersson Sundén, E., Baiã¡o, D., Belonohy, Ã. ., Bergsã¥ker, H., Bãlkovã¡, P., Bjã¶rkas, C., Bodnã¡r, G., Broså awski, A., Calabrã², G., Crombã©, K., De Castro, A., De La Cal, E., De La Luna, E., De Pablos, J. L., De Vries, P., Den Harder, N., D'Inca, R., Donnã©, T., Duckworth, P. h., Ä uran, I., Durodiã©, F., Eich, T. h., Fã©vrier, O., Gã¡l, K., Gaå azka, K., Galvã¡o, R., GarcÃa-Muñoz, M., Gardarein, J. -. L., Glã¶ggler, S., Goloborod'Ko, V., Goncalves, B., Guã©rard, C., Horã¡ä ek, J., Imrãå¡ek, M., Jã¤rvinen, A., Jednorã³g, S., Kã¶chl, F., Kã¶ppen, M., Kowalska-StrzÈ©ciwilk, E., Ksiaå¼ek, I., Å aszyå ska, E., Linsmeier, C. h., Lã¶nnroth, J., Lã³pez, J. M., López-Razola, J., Maquet, P. h., Markoviä , T., MartÃn De Aguilera, A., Martãnez, F. J., MartÃn-SolÃs, J. R., Mertens, P. h., Mlynã¡å , J., O'Gorman, T., O'Mullane, M., Pehkonen, S. -. P., Perez Von Thun, C., Petrå¾ilka, V., Pfefferlã©, D., Pires Dos Reis, A., Pã¼tterich, T. h., Rattã¡, G., Rã©fy, D., Regaã±a, J., Schã¶pf, K., Schwã¶rer, D., Sipilã¤, S. K., Sirã©n, P., Sjã¶strand, H., Stankå«nas, G., Strã¶m, P., Å widerski, Å. ., Tã¡l, B., Thompson, C. -. A., Thrysã¸e, A. S., Tomeå¡, M., Tskhakaya Jun, D., Van Rooij, G. J., Vondrã¡ä ek, P., Pires De Sa, W. W., Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Laboratoire de microbiologie et génétique moléculaires (LMGM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Energia [Milano] (DENG), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Research Centre Julich (FZJ), Institute for Plasma Research, Instituto Superior Tecnico Lisboa, Queen's University Belfast, University of Helsinki, CEA, Department of Applied Physics, School services, SCI, National Institutes for Quantum and Radiological Science and Technology, VTT, University of Naples Federico II, Universidad Nacional de Educacion a Distancia, CNR, Russian Research Centre Kurchatov Institute, Universita degli Studi di Napoli Parthenope, Ente Per Le Nuove Tecnologie L'energia e l'ambiente, Troitsk Institute for Innovation and Fusion Research, Uppsala University, National Institute for Cryogenics and Isotopic Technology, Max-Planck-Institut fur Plasmaphysik, University of Catania, Fusion for Energy Joint Undertaking, National Institutes of Natural Sciences - National Institute for Fusion Science, Massachusetts Institute of Technology, University of Latvia, Imperial College London, CIEMAT, University of Oxford, EUROfusion Programme Management Unit, Oak Ridge National Laboratory, Karlsruhe Institute of Technology KIT, University of York, Royal Institute of Technology, Maritime University of Szczecin, H. Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Czech Academy of Sciences, University of Trento, Ecole Polytechnique Federale de Lausanne (EPFL), Wigner Research Centre for Physics, Comenius University, University of Milan - Bicocca, National Institute for Optoelectronics, Fourth State Research, University of Texas at Austin, Belgian Nuclear Research Center, National Centre for Nuclear Research (NCBJ), Princeton University, CNRS, University of Cagliari, University of Warwick, Soltan Institute for Nuclear Studies, FOM Institute DIFFER, National Institute for Laser, Plasma and Radiation Physics, Ghent University, J. Stefan Institute, Universite de Lorraine, CAS - Institute of Plasma Physics, University of California at San Diego, Koninklijke Militaire School - Ecole Royale Militaire, Horia Hulubei National Institute of Physics and Nuclear Engineering, Chalmers University of Technology, School services, ELEC, Department of Signal Processing and Acoustics, Automaatio- ja systeemitekniik, Universidad Politecnica de Madrid, Second University of Naples, Warsaw University of Technology, Universita della Basilicata, Barcelona Supercomp. Center, Universidad de Sevilla, Centro Brasileiro de Pesquisas Fisicas, Department of Electrical Engineering and Automation, Sähkötekniikan laitos, University of Rome Tor Vergata, RAS - Ioffe Physico Technical Institute, General Atomics, University of Innsbruck, Fusion and Plasma Physics, University of Toyama, University of Strathclyde, National Technical University of Athens, Universita della Tuscia, Technical University of Denmark, Korea Advanced Institute of Science and Technology, Seoul National University, University College Cork, Vienna University of Technology, University of Opole, Daegu University, National Fusion Research Institute, Dublin City University, Universidad Politécnica de Madrid, PELIN LLC, Arizona State University, Universidad Complutense, University of Basel, Universidad Carlos III de Madrid, Consorzio CREATE, Demokritos National Centre for Scientific Research, Purdue University, Universite Libre de Bruxelles, School Services, ARTS, Department of Design, University of California Office of the President, Universidade de Sao Paulo, School Services, BIZ, Department of Information and Service Management, Lithuanian Energy Institute, HRS Fusion, Politecnico di Torino, University of Cassino, University of Electronic Science and Technology of China, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, and Faculdade de Engenharia
- Subjects
Technology ,fusion ,Física [Ciências exactas e naturais] ,Tokamak ,Nuclear engineering ,DIAGNOSTICS ,01 natural sciences ,ILW ,010305 fluids & plasmas ,law.invention ,Ilw ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Plasma ,H-Mode Plasmas ,law ,ITER ,Disruption Prediction ,COLLISIONALITY ,EDGE LOCALIZED MODES ,Diagnostics ,Operation ,JET ,plasma ,Nuclear and High Energy Physics ,Condensed Matter Physics ,Physics ,Jet (fluid) ,JET, plasma, fusion, ITER ,Divertor ,Settore FIS/01 - Fisica Sperimentale ,Fusion, Plasma and Space Physics ,DENSITY PEAKING ,Carbon Wall ,H-MODE PLASMAS ,[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Density Peaking ,Neutron transport ,Facing Components ,Collisionality ,114 Physical sciences ,Física, Física ,Nuclear physics ,Physical sciences [Natural sciences] ,Fusion, plasma och rymdfysik ,Pedestal ,0103 physical sciences ,Nuclear fusion ,ddc:530 ,Neutron ,010306 general physics ,Fusion ,Physics, Physical sciences ,Nuclear and High Energy Physic ,Edge Localized Modes ,QC717 ,Física [Àrees temàtiques de la UPC] ,Reactors de fusió ,Física ,FACING COMPONENTS ,Fusion reactors ,Jet ,CARBON WALL ,DISRUPTION PREDICTION ,OPERATION ,ddc:600 - Abstract
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at ßN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. Peer Reviewed Article signat per 1.173 autors/es: X. Litaudon35, S. Abduallev39, M. Abhangi46, P. Abreu53, M. Afzal7, K.M. Aggarwal29, T. Ahlgren101, J.H. Ahn8, L. Aho-Mantila112, N. Aiba69, M. Airila112, R. Albanese105, V. Aldred7, D. Alegre93, E. Alessi45, P. Aleynikov55, A. Alfier12, A. Alkseev72, M. Allinson7, B. Alper7, E. Alves53, G. Ambrosino105, R. Ambrosino106, L. Amicucci90, V. Amosov88, E. Andersson Sundén22, M. Angelone90, M. Anghel85, C. Angioni62, L. Appel7, C. Appelbee7, P. Arena30, M. Ariola106, H. Arnichand8, S. Arshad41, A. Ash7, N. Ashikawa68, V. Aslanyan64, O. Asunta1, F. Auriemma12, Y. Austin7, L. Avotina103, M.D. Axton7, C. Ayres7, M. Bacharis24, A. Baciero57, D. Baião53, S. Bailey7, A. Baker7, I. Balboa7, M. Balden62, N. Balshaw7, R. Bament7, J.W. Banks7, Y.F. Baranov7, M.A. Barnard7, D. Barnes7, M. Barnes27, R. Barnsley55, A. Baron Wiechec7, L. Barrera Orte34, M. Baruzzo12, V. Basiuk8, M. Bassan55, R. Bastow7, A. Batista53, P. Batistoni90, R. Baughan7, B. Bauvir55, L. Baylor73, B. Bazylev56, J. Beal110, P.S. Beaumont7, M. Beckers39, B. Beckett7, A. Becoulet8, N. Bekris35, M. Beldishevski7, K. Bell7, F. Belli90, M. Bellinger7, É. Belonohy62, N. Ben Ayed7, N.A. Benterman7, H. Bergsåker42, J. Bernardo53, M. Bernert62, M. Berry7, L. Bertalot55, C. Besliu7, M. Beurskens63, B. Bieg61, J. Bielecki47, T. Biewer73, M. Bigi12, P. Bílková50, F. Binda22, A. Bisoffi31, J.P.S. Bizarro53, C. Björkas101, J. Blackburn7, K. Blackman7, T.R. Blackman7, P. Blanchard33, P. Blatchford7, V. Bobkov62, A. Boboc7, G. Bodnár113, O. Bogar18, I. Bolshakova60, T. Bolzonella12, N. Bonanomi97, F. Bonelli56, J. Boom62, J. Booth7, D. Borba35,53, D. Borodin39, I. Borodkina39, A. Botrugno90, C. Bottereau8, P. Boulting7, C. Bourdelle8, M. Bowden7, C. Bower7, C. Bowman110, T. Boyce7, C. Boyd7, H.J. Boyer7, J.M.A. Bradshaw7, V. Braic87, R. Bravanec40, B. Breizman107, S. Bremond8, P.D. Brennan7, S. Breton8, A. Brett7, S. Brezinsek39, M.D.J. Bright7, M. Brix7, W. Broeckx78, M. Brombin12, A. Brosławski65, D.P.D. Brown7, M. Brown7, E. Bruno55, J. Bucalossi8, J. Buch46, J. Buchanan7, M.A. Buckley7, R. Budny76, H. Bufferand8, M. Bulman7, N. Bulmer7, P. Bunting7, P. Buratti90, A. Burckhart62, A. Buscarino30, A. Busse7, N.K. Butler7, I. Bykov42, J. Byrne7, P. Cahyna50, G. Calabrò90, I. Calvo57, Y. Camenen4, P. Camp7, D.C. Campling7, J. Cane7, B. Cannas17, A.J. Capel7, P.J. Card7, A. Cardinali90, P. Carman7, M. Carr7, D. Carralero62, L. Carraro12, B.B. Carvalho53, I. Carvalho53, P. Carvalho53, F.J. Casson7, C. Castaldo90, N. Catarino53, J. Caumont7, F. Causa90, R. Cavazzana12, K. Cave-Ayland7, M. Cavinato12, M. Cecconello22, S. Ceccuzzi90, E. Cecil76, A. Cenedese12, R. Cesario90, C.D. Challis7, M. Chandler7, D. Chandra46, C.S. Chang76, A. Chankin62, I.T. Chapman7, S.C. Chapman28, M. Chernyshova49, G. Chitarin12, G. Ciraolo8, D. Ciric7, J. Citrin38, F. Clairet8, E. Clark7, M. Clark7, R. Clarkson7, D. Clatworthy7, C. Clements7, M. Cleverly7, J.P. Coad7, P.A. Coates7, A. Cobalt7, V. Coccorese105, V. Cocilovo90, S. Coda33, R. Coelho53, J.W. Coenen39, I. Coffey29, L. Colas8, S. Collins7, D. Conka103, S. Conroy22, N. Conway7, D. Coombs7, D. Cooper7, S.R. Cooper7, C. Corradino30, Y. Corre8, G. Corrigan7, S. Cortes53, D. Coster62, A.S. Couchman7, M.P. Cox7, T. Craciunescu86, S. Cramp7, R. Craven7, F. Crisanti90, G. Croci97, D. Croft7, K. Crombé15, R. Crowe7, N. Cruz53, G. Cseh113, A. Cufar81, A. Cullen7, M. Curuia85, A. Czarnecka49, H. Dabirikhah7, P. Dalgliesh7, S. Dalley7, J. Dankowski47, D. Darrow76, O. Davies7, W. Davis55,76, C. Day56, I.E. Day7, M. De Bock55, A. de Castro57, E. de la Cal57, E. de la Luna57, G. De Masi12, J. L. de Pablos57, G. De Temmerman55, G. De Tommasi105, P. de Vries55, K. Deakin7, J. Deane7, F. Degli Agostini12, R. Dejarnac50, E. Delabie73, N. den Harder38, R.O. Dendy7, J. Denis8, P. Denner39, S. Devaux62,104, P. Devynck8, F. Di Maio55, A. Di Siena62, C. Di Troia90, P. Dinca86, R. D’Inca62, B. Ding51, T. Dittmar39, H. Doerk62, R.P. Doerner9, T. Donné34, S.E. Dorling7, S. Dormido-Canto93, S. Doswon7, D. Douai8, P.T. Doyle7, A. Drenik62,81, P. Drewelow63, P. Drews39, Ph. Duckworth55, R. Dumont8, P. Dumortier58, D. Dunai113, M. Dunne62, I. Ďuran50, F. Durodié58, P. Dutta46, B. P. Duval33, R. Dux62, K. Dylst78, N. Dzysiuk22, P.V. Edappala46, J. Edmond7, A.M. Edwards7, J. Edwards7, Th. Eich62, A. Ekedahl8, R. El-Jorf7, C.G. Elsmore7, M. Enachescu84, G. Ericsson22, F. Eriksson16, J. Eriksson22, L.G. Eriksson36, B. Esposito90, S. Esquembri94, H.G. Esser39, D. Esteve8, B. Evans7, G.E. Evans7, G. Evison7, G.D. Ewart7, D. Fagan7, M. Faitsch62, D. Falie86, A. Fanni17, A. Fasoli33, J. M. Faustin33, N. Fawlk7, L. Fazendeiro53, N. Fedorczak8, R.C. Felton7, K. Fenton7, A. Fernades53, H. Fernandes53, J. Ferreira53, J.A. Fessey7, O. Février8, O. Ficker50, A. Field7, S. Fietz62, A. Figueiredo53, J. Figueiredo53,35, A. Fil8, P. Finburg7, M. Firdaouss8, U. Fischer56, L. Fittill7, M. Fitzgerald7, D. Flammini90, J. Flanagan7, C. Fleming7, K. Flinders7, N. Fonnesu90, J. M. Fontdecaba57, A. Formisano79, L. Forsythe7, L. Fortuna30, E. Fortuna-Zalesna19, M. Fortune7, S. Foster7, T. Franke34, T. Franklin7, M. Frasca30, L. Frassinetti42, M. Freisinger39, R. Fresa98, D. Frigione90, V. Fuchs50, D. Fuller35, S. Futatani6, J. Fyvie7, K. Gál34,62, D. Galassi2, K. Gałązka49, J. Galdon-Quiroga92, J. Gallagher7, D. Gallart6, R. Galvão10, X. Gao51, Y. Gao39, J. Garcia8, A. Garcia-Carrasco42, M. García-Muñoz92, J.-L. Gardarein3, L. Garzotti7, P. Gaudio95, E. Gauthier8, D.F. Gear7, S.J. Gee7, B. Geiger62, M. Gelfusa95, S. Gerasimov7, G. Gervasini45, M. Gethins7, Z. Ghani7, M. Ghate46, M. Gherendi86, J.C. Giacalone8, L. Giacomelli45, C.S. Gibson7, T. Giegerich56, C. Gil8, L. Gil53, S. Gilligan7, D. Gin54, E. Giovannozzi90, J.B. Girardo8, C. Giroud7, G. Giruzzi8, S. Glöggler62, J. Godwin7, J. Goff7, P. Gohil43, V. Goloborod’ko102, R. Gomes53, B. Gonçalves53, M. Goniche8, M. Goodliffe7, A. Goodyear7, G. Gorini97, M. Gosk65, R. Goulding76, A. Goussarov78, R. Gowland7, B. Graham7, M.E. Graham7, J. P. Graves33, N. Grazier7, P. Grazier7, N.R. Green7, H. Greuner62, B. Grierson76, F.S. Griph7, C. Grisolia8, D. Grist7, M. Groth1, R. Grove73, C.N. Grundy7, J. Grzonka19, D. Guard7, C. Guérard34, C. Guillemaut8,53, R. Guirlet8, C. Gurl7, H.H. Utoh69, L.J. Hackett7, S. Hacquin8,35, A. Hagar7, R. Hager76, A. Hakola112, M. Halitovs103, S.J. Hall7, S.P. Hallworth Cook7, C. Hamlyn-Harris7, K. Hammond7, C. Harrington7, J. Harrison7, D. Harting7, F. Hasenbeck39, Y. Hatano108, D.R. Hatch107, T.D.V. Haupt7, J. Hawes7, N.C. Hawkes7, J. Hawkins7, P. Hawkins7, P.W. Haydon7, N. Hayter7, S. Hazel7, P.J.L. Heesterman7, K. Heinola101, C. Hellesen22, T. Hellsten42, W. Helou8, O.N. Hemming7, T.C. Hender7, M. Henderson55, S.S. Henderson21, R. Henriques53, D. Hepple7, G. Hermon7, P. Hertout8, C. Hidalgo57, E.G. Highcock27, M. Hill7, J. Hillairet8, J. Hillesheim7, D. Hillis73, K. Hizanidis70, A. Hjalmarsson22, J. Hobirk62, E. Hodille8, C.H.A. Hogben7, G.M.D. Hogeweij38, A. Hollingsworth7, S. Hollis7, D.A. Homfray7, J. Horáček50, G. Hornung15, A.R. Horton7, L.D. Horton36, L. Horvath110, S.P. Hotchin7, M.R. Hough7, P.J. Howarth7, A. Hubbard64, A. Huber39, V. Huber39, T.M. Huddleston7, M. Hughes7, G.T.A. Huijsmans55, C.L. Hunter7, P. Huynh8, A.M. Hynes7, D. Iglesias7, N. Imazawa69, F. Imbeaux8, M. Imríšek50, M. Incelli109, P. Innocente12, M. Irishkin8, I. Ivanova-Stanik49, S. Jachmich58,35, A.S. Jacobsen83, P. Jacquet7, J. Jansons103, A. Jardin8, A. Järvinen1, F. Jaulmes38, S. Jednoróg49, I. Jenkins7, C. Jeong20, I. Jepu86, E. Joffrin8, R. Johnson7, T. Johnson42, Jane Johnston7, L. Joita7, G. Jones7, T.T.C. Jones7, K.K. Hoshino69, A. Kallenbach62, K. Kamiya69, J. Kaniewski7, A. Kantor7, A. Kappatou62, J. Karhunen1, D. Karkinsky7, I. Karnowska7, M. Kaufman73, G. Kaveney7, Y. Kazakov58, V. Kazantzidis70, D.L. Keeling7, T. Keenan7, J. Keep7, M. Kempenaars7, C. Kennedy7, D. Kenny7, J. Kent7, O.N. Kent7, E. Khilkevich54, H.T. Kim35, H.S. Kim80, A. Kinch7, C. king7, D. King7, R.F. King7, D.J. Kinna7, V. Kiptily7, A. Kirk7, K. Kirov7, A. Kirschner39, G. Kizane103, C. Klepper73, A. Klix56, P. Knight7, S.J. Knipe7, S. Knott96, T. Kobuchi69, F. Köchl111, G. Kocsis113, I. Kodeli81, L. Kogan7, D. Kogut8, S. Koivuranta112, Y. Kominis70, M. Köppen39, B. Kos81, T. Koskela1, H.R. Koslowski39, M. Koubiti4, M. Kovari7, E. Kowalska-Strzęciwilk49, A. Krasilnikov88, V. Krasilnikov88, N. Krawczyk49, M. Kresina8, K. Krieger62, A. Krivska58, U. Kruezi7, I. Książek48, A. Kukushkin72, A. Kundu46, T. Kurki-Suonio1, S. Kwak20, R. Kwiatkowski65, O.J. Kwon13, L. Laguardia45, A. Lahtinen101, A. Laing7, N. Lam7, H.T. Lambertz39, C. Lane7, P.T. Lang62, S. Lanthaler33, J. Lapins103, A. Lasa101, J.R. Last7, E. Łaszyńska49, R. Lawless7, A. Lawson7, K.D. Lawson7, A. Lazaros70, E. Lazzaro45, J. Leddy110, S. Lee66, X. Lefebvre7, H.J. Leggate32, J. Lehmann7, M. Lehnen55, D. Leichtle41, P. Leichuer7, F. Leipold55,83, I. Lengar81, M. Lennholm36, E. Lerche58, A. Lescinskis103, S. Lesnoj7, E. Letellier7, M. Leyland110, W. Leysen78, L. Li39, Y. Liang39, J. Likonen112, J. Linke39, Ch. Linsmeier39, B. Lipschultz110, G. Liu55, Y. Liu51, V.P. Lo Schiavo105, T. Loarer8, A. Loarte55, R.C. Lobel7, B. Lomanowski1, P.J. Lomas7, J. Lönnroth1,35, J. M. López94, J. López-Razola57, R. Lorenzini12, U. Losada57, J.J. Lovell7, A.B. Loving7, C. Lowry36, T. Luce43, R.M.A. Lucock7, A. Lukin74, C. Luna5, M. Lungaroni95, C.P. Lungu86, M. Lungu86, A. Lunniss110, I. Lupelli7, A. Lyssoivan58, N. Macdonald7, P. Macheta7, K. Maczewa7, B. Magesh46, P. Maget8, C. Maggi7, H. Maier62, J. Mailloux7, T. Makkonen1, R. Makwana46, A. Malaquias53, A. Malizia95, P. Manas4, A. Manning7, M.E. Manso53, P. Mantica45, M. Mantsinen6, A. Manzanares91, Ph. Maquet55, Y. Marandet4, N. Marcenko88, C. Marchetto45, O. Marchuk39, M. Marinelli95, M. Marinucci90, T. Markovič50, D. Marocco90, L. Marot26, C.A. Marren7, R. Marshal7, A. Martin7, Y. Martin33, A. Martín de Aguilera57, F.J. Martínez93, J. R. Martín-Solís14, Y. Martynova39, S. Maruyama55, A. Masiello12, M. Maslov7, S. Matejcik18, M. Mattei79, G.F. Matthews7, F. Maviglia11, M. Mayer62, M.L. Mayoral34, T. May-Smith7, D. Mazon8, C. Mazzotta90, R. McAdams7, P.J. McCarthy96, K.G. McClements7, O. McCormack12, P.A. McCullen7, D. McDonald34, S. McIntosh7, R. McKean7, J. McKehon7, R.C. Meadows7, A. Meakins7, F. Medina57, M. Medland7, S. Medley7, S. Meigh7, A.G. Meigs7, G. Meisl62, S. Meitner73, L. Meneses53, S. Menmuir7,42, K. Mergia71, I.R. Merrigan7, Ph. Mertens39, S. Meshchaninov88, A. Messiaen58, H. Meyer7, S. Mianowski65, R. Michling55, D. Middleton-Gear7, J. Miettunen1, F. Militello7, E. Militello-Asp7, G. Miloshevsky77, F. Mink62, S. Minucci105, Y. Miyoshi69, J. Mlynář50, D. Molina8, I. Monakhov7, M. Moneti109, R. Mooney7, S. Moradi37, S. Mordijck43, L. Moreira7, R. Moreno57, F. Moro90, A.W. Morris7, J. Morris7, L. Moser26, S. Mosher73, D. Moulton7,1, A. Murari12,35, A. Muraro45, S. Murphy7, N.N. Asakura69, Y.S. Na80, F. Nabais53, R. Naish7, T. Nakano69, E. Nardon8, V. Naulin83, M.F.F. Nave53, I. Nedzelski53, G. Nemtsev88, F. Nespoli33, A. Neto41, R. Neu62, V.S. Neverov72, M. Newman7, K.J. Nicholls7, T. Nicolas33, A.H. Nielsen83, P. Nielsen12, E. Nilsson8, D. Nishijima99, C. Noble7, M. Nocente97, D. Nodwell7, K. Nordlund101, H. Nordman16, R. Nouailletas8, I. Nunes53, M. Oberkofler62, T. Odupitan7, M.T. Ogawa69, T. O’Gorman7, M. Okabayashi76, R. Olney7, O. Omolayo7, M. O’Mullane21, J. Ongena58, F. Orsitto11, J. Orszagh18, B.I. Oswuigwe7, R. Otin7, A. Owen7, R. Paccagnella12, N. Pace7, D. Pacella90, L.W. Packer7, A. Page7, E. Pajuste103, S. Palazzo30, S. Pamela7, S. Panja46, P. Papp18, R. Paprok50, V. Parail7, M. Park66, F. Parra Diaz27, M. Parsons73, R. Pasqualotto12, A. Patel7, S. Pathak46, D. Paton7, H. Patten33, A. Pau17, E. Pawelec48, C. Paz Soldan43, A. Peackoc36, I.J. Pearson7, S.-P. Pehkonen112, E. Peluso95, C. Penot55, A. Pereira57, R. Pereira53, P.P. Pereira Puglia7, C. Perez von Thun35,39, S. Peruzzo12, S. Peschanyi56, M. Peterka50, P. Petersson42, G. Petravich113, A. Petre84, N. Petrella7, V. Petržilka50, Y. Peysson8, D. Pfefferlé33, V. Philipps39, M. Pillon90, G. Pintsuk39, P. Piovesan12, A. Pires dos Reis52, L. Piron7, A. Pironti105, F. Pisano17, R. Pitts55, F. Pizzo79, V. Plyusnin53, N. Pomaro12, O.G. Pompilian86, P.J. Pool7, S. Popovichev7, M.T. Porfiri90, C. Porosnicu86, M. Porton7, G. Possnert22, S. Potzel62, T. Powell7, J. Pozzi7, V. Prajapati46, R. Prakash46, G. Prestopino95, D. Price7, M. Price7, R. Price7, P. Prior7, R. Proudfoot7, G. Pucella90, P. Puglia52, M.E. Puiatti12, D. Pulley7, K. Purahoo7, Th. Pütterich62, E. Rachlew25, M. Rack39, R. Ragona58, M.S.J. Rainford7, A. Rakha6, G. Ramogida90, S. Ranjan46, C.J. Rapson62, J.J. Rasmussen83, K. Rathod46, G. Rattá57, S. Ratynskaia82, G. Ravera90, C. Rayner7, M. Rebai97, D. Reece7, A. Reed7, D. Réfy113, B. Regan7, J. Regaña34, M. Reich62, N. Reid7, F. Reimold39, M. Reinhart34, M. Reinke110,73, D. Reiser39, D. Rendell7, C. Reux8, S.D.A. Reyes Cortes53, S. Reynolds7, V. Riccardo7, N. Richardson7, K. Riddle7, D. Rigamonti97, F.G. Rimini7, J. Risner73, M. Riva90, C. Roach7, R.J. Robins7, S.A. Robinson7, T. Robinson7, D.W. Robson7, R. Roccella55, R. Rodionov88, P. Rodrigues53, J. Rodriguez7, V. Rohde62, F. Romanelli90, M. Romanelli7, S. Romanelli7, J. Romazanov39, S. Rowe7, M. Rubel42, G. Rubinacci105, G. Rubino12, L. Ruchko52, M. Ruiz94, C. Ruset86, J. Rzadkiewicz65, S. Saarelma7, R. Sabot8, E. Safi101, P. Sagar7, G. Saibene41, F. Saint-Laurent8, M. Salewski83, A. Salmi112, R. Salmon7, F. Salzedas53, D. Samaddar7, U. Samm39, D. Sandiford7, P. Santa46, M.I.K. Santala1, B. Santos53, A. Santucci90, F. Sartori41, R. Sartori41, O. Sauter33, R. Scannell7, T. Schlummer39, K. Schmid62, V. Schmidt12, S. Schmuck7, M. Schneider8, K. Schöpf102, D. Schwörer32, S.D. Scott76, G. Sergienko39, M. Sertoli62, A. Shabbir15, S.E. Sharapov7, A. Shaw7, R. Shaw7, H. Sheikh7, A. Shepherd7, A. Shevelev54, A. Shumack38, G. Sias17, M. Sibbald7, B. Sieglin62, S. Silburn7, A. Silva53, C. Silva53, P.A. Simmons7, J. Simpson7, J. Simpson-Hutchinson7, A. Sinha46, S.K. Sipilä1, A.C.C. Sips36, P. Sirén112, A. Sirinelli55, H. Sjöstrand22, M. Skiba22, R. Skilton7, K. Slabkowska49, B. Slade7, N. Smith7, P.G. Smith7, R. Smith7, T.J. Smith7, M. Smithies110, L. Snoj81, S. Soare85, E. R. Solano35,57, A. Somers32, C. Sommariva8, P. Sonato12, A. Sopplesa12, J. Sousa53, C. Sozzi45, S. Spagnolo12, T. Spelzini7, F. Spineanu86, G. Stables7, I. Stamatelatos71, M.F. Stamp7, P. Staniec7, G. Stankūnas59, C. Stan-Sion84, M.J. Stead7, E. Stefanikova42, I. Stepanov58, A.V. Stephen7, M. Stephen46, A. Stevens7, B.D. Stevens7, J. Strachan76, P. Strand16, H.R. Strauss44, P. Ström42, G. Stubbs7, W. Studholme7, F. Subba75, H.P. Summers21, J. Svensson63, Ł. Świderski65, T. Szabolics113, M. Szawlowski49, G. Szepesi7, T.T. Suzuki69, B. Tál113, T. Tala112, A.R. Talbot7, S. Talebzadeh95, C. Taliercio12, P. Tamain8, C. Tame7, W. Tang76, M. Tardocchi45, L. Taroni12, D. Taylor7, K.A. Taylor7, D. Tegnered16, G. Telesca15, N. Teplova54, D. Terranova12, D. Testa33, E. Tholerus42, J. Thomas7, J.D. Thomas7, P. Thomas55, A. Thompson7, C.-A. Thompson7, V.K. Thompson7, L. Thorne7, A. Thornton7, A.S. Thrysøe83, P.A. Tigwell7, N. Tipton7, I. Tiseanu86, H. Tojo69, M. Tokitani67, P. Tolias82, M. Tomeš50, P. Tonner7, M. Towndrow7, P. Trimble7, M. Tripsky58, M. Tsalas38, P. Tsavalas71, D. Tskhakaya jun102, I. Turner7, M.M. Turner32, M. Turnyanskiy34, G. Tvalashvili7, S.G.J. Tyrrell7, A. Uccello45, Z. Ul-Abidin7, J. Uljanovs1, D. Ulyatt7, H. Urano69, I. Uytdenhouwen78, A.P. Vadgama7, D. Valcarcel7, M. Valentinuzzi8, M. Valisa12, P. Vallejos Olivares42, M. Valovic7, M. Van De Mortel7, D. Van Eester58, W. Van Renterghem78, G.J. van Rooij38, J. Varje1, S. Varoutis56, S. Vartanian8, K. Vasava46, T. Vasilopoulou71, J. Vega57, G. Verdoolaege58, R. Verhoeven7, C. Verona95, G. Verona Rinati95, E. Veshchev55, N. Vianello45, J. Vicente53, E. Viezzer62,92, S. Villari90, F. Villone100, P. Vincenzi12, I. Vinyar74, B. Viola90, A. Vitins103, Z. Vizvary7, M. Vlad86, I. Voitsekhovitch34, P. Vondráček50, N. Vora7, T. Vu8, W.W. Pires de Sa52, B. Wakeling7, C.W.F. Waldon7, N. Walkden7, M. Walker7, R. Walker7, M. Walsh55, E. Wang39, N. Wang39, S. Warder7, R.J. Warren7, J. Waterhouse7, N.W. Watkins28, C. Watts55, T. Wauters58, A. Weckmann42, J. Weiland23, H. Weisen33, M. Weiszflog22, C. Wellstood7, A.T. West7, M.R. Wheatley7, S. Whetham7, A.M. Whitehead7, B.D. Whitehead7, A.M. Widdowson7, S. Wiesen39, J. Wilkinson7, J. Williams7, M. Williams7, A.R. Wilson7, D.J. Wilson7, H.R. Wilson110, J. Wilson7, M. Wischmeier62, G. Withenshaw7, A. Withycombe7, D.M. Witts7, D. Wood7, R. Wood7, C. Woodley7, S. Wray7, J. Wright7, J.C. Wright64, J. Wu89, S. Wukitch64, A. Wynn110, T. Xu7, D. Yadikin16, W. Yanling39, L. Yao89, V. Yavorskij102, M.G. Yoo80, C. Young7, D. Young7, I.D. Young7, R. Young7, J. Zacks7, R. Zagorski49, F.S. Zaitsev18, R. Zanino75, A. Zarins103, K.D. Zastrow7, M. Zerbini90, W. Zhang62, Y. Zhou42, E. Zilli12, V. Zoita86, S. Zoletnik113, I. Zychor65 and JET Contributorsa // EUROfusion Consortium JET, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom / 1 Aalto University, PO Box 14100, FIN-00076 Aalto, Finland / 2 Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451, Marseille, France / 3 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France / 4 Aix-Marseille Université, CNRS, PIIM, UMR 7345, 13013 Marseille, France / 5 Arizona State University, Tempe, AZ, United States of America / 6 Barcelona Supercomputing Center, Barcelona, Spain / 7 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom / 8 CEA, IRFM, F-13108 Saint Paul Lez Durance, France / 9 Center for Energy Research, University of California at San Diego, La Jolla, CA 92093, United States of America / 10 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 160, Rio de Janeiro CEP 22290-180, Brazil / 11 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 12 Consorzio RFX, corso Stati Uniti 4, 35127 Padova, Italy / 13 Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-174, Republic of Korea / 14 Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain / 15 Department of Applied Physics UG (Ghent University) St-Pietersnieuwstraat 41 B-9000 Ghent, Belgium / 16 Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 17 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123, Cagliari, Italy / 18 Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics Comenius University Mlynska dolina F2, 84248 Bratislava, Slovakia / 19 Department of Materials Science, Warsaw University of Technology, PL-01-152 Warsaw, Poland / 20 Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea / 21 Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 ONG, United Kingdom / 22 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden / 23 Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 24 Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom / 25 Department of Physics, SCI, KTH, SE-10691 Stockholm, Sweden / 26 Department of Physics, University of Basel, Basel, Switzerland / 27 Department of Physics, University of Oxford, Oxford, OX1 2JD, United Kingdom / 28 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom / 29 Department of Pure and Applied Physics, Queens University, Belfast, BT7 1NN, United Kingdom / 30 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy / 31 Dipartimento di Ingegneria Industriale, University of Trento, Trento, Italy / 32 Dublin City University (DCU), Dublin, Ireland / 33 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland / 34 EUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany / 35 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom / 36 European Commission, B-1049 Brussels, Belgium / 37 Fluid and Plasma Dynamics, ULB—Campus Plaine—CP 231 Boulevard du Triomphe, 1050 Bruxelles, Belgium / 38 FOM Institute DIFFER, Eindhoven, Netherlands / 39 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany / 40 Fourth State Research, 503 Lockhart Dr, Austin, TX, United States of America / 41 Fusion for Energy Joint Undertaking, Josep Pl. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain / 42 Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden / 43 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America / 44 HRS Fusion, West Orange, NJ, United States of America / 45 IFP-CNR, via R. Cozzi 53, 20125 Milano, Italy / 46 Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat State, India / 47 Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland / 48 Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland / 49 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland / 50 Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Praha 8, Czechia / 51 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China / 52 Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brasil / 53 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal / 54 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation / 55 ITER Organization, Route de Vinon, CS 90 046, 13067 Saint Paul Lez Durance, France / 56 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany / 57 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain / 58 Laboratory for Plasma Physics Koninklijke Militaire School—Ecole Royale Militaire, Renaissancelaan 30 Avenue de la Renaissance B-1000, Brussels, Belgium / 59 Lithuanian energy institute, Breslaujos g. 3, LT-44403, Kaunas, Lithuania / 60 Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine / 61 Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland / 62 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany / 63 Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald, Germany / 64 MIT Plasma Science and Fusion Centre, Cambridge, MA 02139, United States of America / 65 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Świerk, Poland / 66 National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea / 67 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan / 68 National Institute for Fusion Science, Toki, 509-5292, Japan / 69 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan / 70 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece / 71 NCSR ‘Demokritos’, 153 10, Agia Paraskevi Attikis, Greece / 72 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russian Federation / 73 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, United States of America / 74 PELIN LLC, 27a, Gzhatskaya Ulitsa, Saint Petersburg, 195220, Russian Federation / 75 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy / 76 Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton, NJ 08543, United States of America / 77 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States of America / 78 SCK-CEN, Nuclear Research Centre, 2400 Mol, Belgium / 79 Second University of Napoli, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 80 Seoul National University, Shilim-Dong, Gwanak-Gu, Republic of Korea / 81 Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia / 82 Space and Plasma Physics, EES, KTH SE-100 44 Stockholm, Sweden / 83 Technical University of Denmark, Department of Physics, Bldg 309, DK-2800 Kgs Lyngby, Denmark / 84 The ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, Magurele-Bucharest, Romania / 85 The National Institute for Cryogenics and Isotopic Technology, Ramnicu Valcea, Romania / 86 The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania / 87 The National Institute for Optoelectronics, Magurele-Bucharest, Romania / 88 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russian Federation / 89 University of Electronic Science and Technology of China, Chengdu, People’s Republic of China / 90 Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy / 91 Universidad Complutense de Madrid, Madrid, Spain / 92 Universidad de Sevilla, Sevilla, Spain / 93 Universidad Nacional de Educación a Distancia, Madrid, Spain / 94 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain / 95 Università di Roma Tor Vergata, Via del Politecnico 1, Roma, Italy / 96 University College Cork (UCC), Ireland / 97 University Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy / 98 University of Basilicata, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 99 University of California, 1111 Franklin St., Oakland, CA 94607, United States of America / 100 University of Cassino, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 101 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland / 102 University of Innsbruck, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Innsbruck, Austria / 103 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia / 104 University of Lorraine, CNRS, UMR7198, YIJL, Nancy, France / 105 University of Napoli ‘Federico II’, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 106 University of Napoli Parthenope, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 107 University of Texas at Austin, Institute for Fusion Studies, Austin, TX 78712, United States of America / 108 University of Toyama, Toyama, 930-8555, Japan / 109 University of Tuscia, DEIM, Via del Paradiso 47, 01100 Viterbo, Italy / 110 University of York, Heslington, York YO10 5DD, United Kingdom / 111 Vienna University of Technology, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Austria / 112 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland / 113 Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
- Published
- 2017
- Full Text
- View/download PDF
7. Overview of recent physics results from MAST
- Author
-
A. Kirk, J. Horacek, C. D. Challis, I. Klimek, W. A. Peebles, K. Imada, W. A. Gracias, H. R. Wilson, A. W. Morris, L. Piron, K Tani, M. Wischmeier, Sean Conroy, D. A. Ryan, M. O’Brien, F. Arese Lucini, Fabio Riva, Ryota Imazawa, Sandra C. Chapman, Anders Nielsen, P. Cahyna, Nick Walkden, Michael Barnes, I. Fitzgerald, C. Gurl, G. Fishpool, A. Patel, Takuma Yamada, M. Cecconello, M. Turnyanskiy, Ben F. McMillan, A. R. Field, G. Cunningham, Y. Liu, T.R. Barrett, F. J. Casson, Michael F. J. Fox, M. Cox, G. Naylor, A.J. Thornton, Matthew Carr, Nicolas Fedorczak, R. Scannell, L. Pangione, L. Garzotti, N. C. Hawkes, Hiroshi Tanabe, T. Farley, Yasushi Ono, M. Evans, Gen Motojima, Daniel Dunai, T. O'Gorman, S. Saarelma, William Dorland, H. F. Meyer, G. McArdle, B. Huang, E. Havlickova, T. Watanabe, Michiaki Inomoto, R. O. Dendy, Paolo Ricci, Edmund Highcock, F. van Wyk, H. Leggate, Matthias Komm, Jens Madsen, Alexander Schekochihin, S. A. Silburn, I. T. Chapman, S.M. Kaye, Hajime Tanaka, Jeppe Olsen, F. Militello, S. D. Pinches, R. V. Perez, D. Harting, K. G. McClements, Jarrod Leddy, C. M. Roach, Roddy G. L. Vann, Luke Easy, Walter Guttenfelder, Patrick Tamain, Benjamin Daniel Dudson, M. G. O'Mullane, John Omotani, W. A. Cooper, B. Lloyd, Felix I. Parra, K. J. Gibson, EUROfusion Mst Team, S. Cardnell, N. J. Conway, O. M. Jones, W. Lai, J. Young, S. S. Henderson, Brendan M. Crowley, Romualdo Martín, Neal Crocker, A. Meakins, A. V. Danilov, Ray M. Sharples, D. L. Keeling, M. Gorelenkova, J. Simpson, J. Hollocombe, J. Adamek, Bogdan Hnat, N. Ben Ayed, L Kogan, Matthew Reinke, M. Valovic, J. R. Harrison, Bruce Lipschultz, Vladimir Shevchenko, Clive Michael, J. Storrs, M. Romanelli, M. Price, S. E. Sharapov, John Howard, J. Mailloux, N. Thomas-Davies, D. Muir, Stanislas Pamela, David Dickinson, James W. Bradley, M. Kocan, J. Chorley, Philippa Browning, H. P. Summers, Yuichi Takase, Vyacheslav S. Lukin, G. P. Maddison, J. Milnes, Keii Gi, L. Appel, Adam Stanier, Daniel Thomas, S. Allan, Ivan Lupelli, Young-chul Ghim, D. F. Howell, J. C. Hillesheim, S.W. Lisgo, A. N. Saveliev, David Taylor, W. Boeglin, Kazutake Kadowaki, J. Brunner, C. Ham, R. J. Akers, D. S. Darrow, B. Lomanowski, T. C. Hender, S. Elmore, Mast Team, Simon Freethy, S. Zoletnik, Kouji Shinohara, MAST Team, and EUROfusion MST1 Team
- Subjects
Physics ,Nuclear and High Energy Physics ,Toroid ,Turbulence ,Divertor ,FOS: Physical sciences ,Electron ,Plasma ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Resonant magnetic perturbations ,Physics - Plasma Physics ,010305 fluids & plasmas ,Computational physics ,Plasma Physics (physics.plasm-ph) ,Pedestal ,Physics::Plasma Physics ,0103 physical sciences ,Electron temperature ,010306 general physics - Abstract
New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp up models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge detailed studies have revealed how filament characteristic are responsible for determining the near and far SOL density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during ELMs and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n>1 has been shown to be important for plasma performance., 34 pages, 10 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it
- Published
- 2016
8. Integrated equilibrium reconstruction and MHD stability analysis of tokamak plasmas in the EU-IM platform
- Author
-
Rui Coelho, Blaise Faugeras, Edmondo Giovanozzi, Patrick Mc Carthy, Wolfgang Zwingmann, Suchkov, E. P., Zaitsev, F. S., Dunne, M., Ivan Lupelli, Hawkes, N., Gabor Szepesi, Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Control, Analysis and Simulations for TOkamak Research (CASTOR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Jean Alexandre Dieudonné (JAD), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Department of Physics, University College Cork (UCC), Research & Innovation [Brussels], European Commission [Brussels], Comenius University in Bratislava, Scientific Research Institute of System Development, Russian Academy of Sciences [Moscow] (RAS), Max-Planck-Institut für Plasmaphysik [Garching] (IPP), EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], JET Contributors, ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society, EUROfusion-IM Team, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), and Laboratoire Jean Alexandre Dieudonné (LJAD)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
International audience; In the framework of the EUROfusion Work Package on Code Development for Integrated Modelling, a scientific Kepler workflow for the reconstructionof Tokamak plasma equilibrium was developed. It includes consolidated reconstruction codes such as EQUAL, CLISTE, EQUINOX and post-processing error bar estimator SDSS, all using the same physics and machine data ontology and methods for accessing the data used in the European Integrated Modelling (EU-IM) framework [6]. Presently implemented modules (actors) are interfaced to “data bundles” e.g. magnetic sensors, Thomson scattering diagnostics as well as poloidal field coil data, are packed into a “machine bundle”, to facilitate the data exchange in the workflow through selfconsistent datasets. The reconstruction codes feature polynomial or spline (natural or Bspline) representation for the profiles and non-uniform spatially distributed knots for the equilibrium regularisations are implemented. Equilibrium reconstructions relying on magnetics data only (magnetic diagnostic, PF/TF coils and iron core) or with added internal data (motional Stark effect, polarimetry or pressure) may be performed. For pedestal top/edge pressure profile assisted reconstructions, pre-processing of the experimental density and temperature data presently includes a median filter and time average around the time of interest, mapped to the flux coordinates obtained for that time in the previous (magnetics only) reconstruction. Ion density is assumed to be proportional to electron density and fast particle density is assumed negligible
- Published
- 2016
9. Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model
- Author
-
Pasquale Gaudio, Maria Teresa Porfiri, Carlo Bellecci, R Quaranta, Andrea Malizia, Ivan Lupelli, and Maria Richetta
- Subjects
Leak ,business.industry ,Mechanical Engineering ,Nuclear engineering ,Divertor ,Computational fluid dynamics ,Fusion power ,Settore ING-IND/20 - Misure e Strumentazione Nucleari ,Nuclear Energy and Engineering ,Cabin pressurization ,Thermal ,Fluent ,Environmental science ,General Materials Science ,Vertical displacement ,business ,Civil and Structural Engineering - Abstract
Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al. [1] ; Sharpe and Humrickhouse [2] ). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome “Tor Vergata” Quantum Electronics and Plasmas lab.
- Published
- 2011
- Full Text
- View/download PDF
10. Multi-code analysis of scrape-off layer filament dynamics in MAST
- Author
-
Nick Walkden, Luke Easy, Jeppe Olsen, J. Young, T. Farley, Ivan Lupelli, Paolo Ricci, W. A. Gracias, Jens Madsen, Fabio Riva, Patrick Tamain, Anders Nielsen, Fulvio Militello, and Nicolas Fedorczak
- Subjects
Physics ,Tokamak ,Field line ,business.industry ,Perturbation (astronomy) ,Plasma ,CRPP_EDGE ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Computational physics ,Protein filament ,Amplitude ,Optics ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,Perpendicular ,Light emission ,010306 general physics ,business - Abstract
Four numerical codes are employed to investigate the dynamics of scrape-off layer filaments in tokamak relevant conditions. Experimental measurements were taken in the MAST device using visual camera imaging, which allows the evaluation of the perpendicular size and velocity of the filaments, as well as the combination of density and temperature associated with the perturbation. A new algorithm based on the light emission integrated along the field lines associated with the position of the filament is developed to ensure that it is properly detected and tracked. The filaments are found to have velocities of the order of 1 km s(-1), a perpendicular diameter of around 2-3 cm and a density amplitude 2-3.5 times the background plasma. 3D and 2D numerical codes (the STORM module of BOUT++, GBS, HESEL and TOKAM3X) are used to reproduce the motion of the observed filaments with the purpose of validating the codes and of better understanding the experimental data. Good agreement is found between the 3D codes. The seeded filament simulations are also able to reproduce the dynamics observed in experiments with accuracy up to the experimental errorbar levels. In addition, the numerical results showed that filaments characterised by similar size and light emission intensity can have quite different dynamics if the pressure perturbation is distributed differently between density and temperature components. As an additional benefit, several observations on the dynamics of the filaments in the presence of evolving temperature fields were made and led to a better understanding of the behaviour of these coherent structures.
- Published
- 2016
- Full Text
- View/download PDF
11. Electron cyclotron emission spectra in X- and O-mode polarisation at JET: Martin-Puplett interferometer, absolute calibration, revised uncertainties, inboard/outboard temperature profile, and wall properties
- Author
-
J. Fessey, Eva Belonohy, S. Schmuck, J. E. Boom, L. Meneses, P. Abreu, and Ivan Lupelli
- Subjects
Physics ,Jet (fluid) ,Tokamak ,business.industry ,Joint European Torus ,Cyclotron ,Temperature ,01 natural sciences ,Fusion, Plasma and Space Physics ,010305 fluids & plasmas ,law.invention ,Interferometry ,Fusion, plasma och rymdfysik ,Optics ,law ,0103 physical sciences ,Calibration ,Electron temperature ,Plasma diagnostics ,Emission spectrum ,ECE ,010306 general physics ,business ,Interferometer ,Instrumentation - Abstract
At the tokamak Joint European Torus (JET), the electron cyclotron emission spectra in O-mode and X-mode polarisations are diagnosed simultaneous in absolute terms for several harmonics with two Martin-Puplett interferometers. From the second harmonic range in X-mode polarisation, the electron temperature profile can be deduced for the outboard side (low magnetic field strength) of JET but only for some parts of the inboard side (high magnetic field strength). This spatial restriction can be bypassed, if a cutoff is not present inside the plasma for O-mode waves in the first harmonic range. Then, from this spectral domain, the profile on the entire inboard side is accessible. The profile determination relies on the new absolute and independent calibration for both interferometers. During the calibration procedure, the antenna pattern was investigated as well, and, potentially, an increase in the diagnostic responsivity of about 5% was found for the domain 100-300 GHz. This increase and other uncertainty sources are taken into account in the thorough revision of the uncertainty for the diagnostic absolute calibration. The uncertainty deduced and the convolution inherent for Fourier spectroscopy diagnostics have implications for the temperature profile inferred. Having probed the electron cyclotron emission spectra in orthogonal polarisation directions for the first harmonic range, a condition is derived for the reflection and polarisation-scrambling coefficients of the first wall on the outboard side of JET. QC 20220509
- Published
- 2016
12. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas
- Author
-
Mervi Mantsinen, Alexander Lukin, Stefan Matejcik, Soare Sorin, Francesco Romanelli, Emilio Blanco, Bohdan Bieg, Jacob Eriksson, Ivan Lupelli, Vladislav Plyusnin, José Vicente, Alberto Loarte, Rajnikant Makwana, CHIARA MARCHETTO, Marco Wischmeier, Choong-Seock Chang, Aneta Gójska, Manuel Garcia-munoz, and JET Contributors
- Subjects
Physics ,Jet (fluid) ,Toroid ,Cyclotron ,Sawtooth wave ,Plasma ,Condensed Matter Physics ,01 natural sciences ,Neutral beam injection ,010305 fluids & plasmas ,Ion ,law.invention ,law ,0103 physical sciences ,Atomic physics ,010306 general physics ,Beam (structure) - Abstract
Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfven Eigenmodes inside the q = 1 surface (also called “tornado” modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutroncamera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.
- Published
- 2016
13. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography
- Author
-
Alexander Lukin, Stefan Matejcik, Soare Sorin, Francesco Romanelli, Emilio Blanco, Teddy CRACIUNESCU, Bohdan Bieg, Ivan Lupelli, Ana Fernandes, José Vicente, Alberto Loarte, Andrea Murari, Rajnikant Makwana, CHIARA MARCHETTO, Marco Wischmeier, Choong-Seock Chang, Aneta Gójska, and Manuel Garcia-munoz
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Joint European Torus ,01 natural sciences ,010305 fluids & plasmas ,Optics ,Tomographic inversion ,Repair Joint European Torus ,0103 physical sciences ,Emissivity ,Variance calculations ,Neutron detection ,Neutron ,010306 general physics ,Instrumentation ,Tomography ,Physics ,Neutrons ,Tomographic reconstruction ,Statistical properties ,business.industry ,Neutron tomography ,Covariance ,Electromagnetic wave emission ,Reconstruction techniques ,Reconstruction process ,Numerical methods ,business ,Algorithm ,Maximum likelihood Principle ,Maximum likelihood - Abstract
The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.
- Published
- 2016
- Full Text
- View/download PDF
14. Runaway electron beam generation and mitigation during disruptions at JET-ILW
- Author
-
A. Manzanares, I. H. Coffey, Ivan Lupelli, V. Riccardo, Diogo Alves, G. Sips, J. Mlynář, U. Kruezi, G. F. Matthews, Stéphane Devaux, Carlo Sozzi, A. Fil, Eva Belonohy, Eric Nardon, A. Boboc, R. Koslowski, Michael Lehnen, P. Drewelow, A. E. Shevelev, A. Martin de Aguilera, P. de Vries, C. Reux, F. Saint-Laurent, Vasily Kiptily, C. Perez von Thun, L. Giacomelli, Jet Contributors, E.M. Khilkevitch, V. Plyusnin, J. Decker, P. J. Lomas, B. Bazylev, S. Brezinsek, E. Nilsson, S.N. Gerasimov, B. Alper, S. Jachmich, JET Contributors, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Karlsruhe Institute of Technology (KIT), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), Association Euratom-FZJ, Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), ITER organization (ITER), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences [Moscow] (RAS), Forschungszentrum Julich - Institut Energie & Klimaforsch, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas [Madrid] (CIEMAT), Institute of Plasma Physics, Association Euratom/IPP.CR (IPP PRAGUE), Czech Academy of Sciences [Prague] (CAS), Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Joint European Torus (JET-EFDA), and Consiglio Nazionale delle Ricerche [Roma] (CNR)
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Electron ,disruptions ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Nuclear physics ,magnetic confinement fusion ,law ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Electric field ,0103 physical sciences ,010306 general physics ,tokamak ,Physics ,Range (particle radiation) ,Magnetic confinement fusion ,runaway electrons ,Plasma ,plasma instabilities ,Condensed Matter Physics ,Magnetohydrodynamics ,magnetohydrodynamics ,plasma-wall interaction ,Beam (structure) - Abstract
Équipe 107 : Physique des plasmas chauds; International audience; Disruptions are a major operational concern for next generation tokamaks, including ITER. They may generate excessive heat loads on plasma facing components, large electromagnetic forces in the machine structures and several MA of multi-MeV runaway electrons. A more complete understanding of the runaway generation processes and methods to suppress them is necessary to ensure safe and reliable operation of future tokamaks. Runaway electrons were studied at JET-ILW showing that their generation dependencies (accelerating electric field, avalanche critical field, toroidal field, MHD fluctuations) are in agreement with current theories. In addition, vertical stability plays a key role in long runaway beam formation. Energies up to 20 MeV are observed. Mitigation of an incoming runaway electron beam triggered by massive argon injection was found to be feasible provided that the injection takes place early enough in the disruption process. However, suppressing an already accelerated runaway electron beam in the MA range was found to be difficult even with injections of more than 2 kPa.m(3) high-Z gases such as krypton or xenon. This may be due to the presence of a cold background plasma weakly coupled to the runaway electron beam which prevents neutrals from penetrating in the electron beam core. Following unsuccessful mitigation attempts, runaway electron impacts on beryllium plasma-facing components were observed, showing localized melting with toroidal asymmetries.
- Published
- 2015
- Full Text
- View/download PDF
15. Symbolic regression via genetic programming for data driven derivation of confinement scaling laws without any assumption on their mathematical form
- Author
-
Ivan Lupelli, Michela Gelfusa, M. Lungaroni, Andrea Murari, Pasquale Gaudio, and Emmanuele Peluso
- Subjects
Data processing ,Mathematical model ,Settore FIS/01 - Fisica Sperimentale ,Extrapolation ,Inference ,Genetic programming ,Expression (computer science) ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Data-driven ,Nuclear Energy and Engineering ,0103 physical sciences ,scaling laws ,genetic programming ,010306 general physics ,Symbolic regression ,symbolic regression ,Algorithm - Abstract
Many measurements are required to control thermonuclear plasmas and to fully exploit them scientifically. In the last years JET has shown the potential to generate about 50 GB of data per shot. These amounts of data require more sophisticated data analysis methodologies to perform correct inference and various techniques have been recently developed in this respect. The present paper covers a new methodology to extract mathematical models directly from the data without any a priori assumption about their expression. The approach, based on symbolic regression via genetic programming, is exemplified using the data of the International Tokamak Physics Activity database for the energy confinement time. The best obtained scaling laws are not in power law form and suggest a revisiting of the extrapolation to ITER. Indeed the best non-power law scalings predict confinement times in ITER approximately between 2 and 3 s. On the other hand, more comprehensive and better databases are required to fully profit from the power of these new methods and to discriminate between the hundreds of thousands of models that they can generate.
- Published
- 2015
- Full Text
- View/download PDF
16. A new approach to the formulation and validation of scaling expressions for plasma confinement in tokamaks
- Author
-
A. Murari, Michela Gelfusa, Emmanuele Peluso, Pasquale Gaudio, and Ivan Lupelli
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,Series (mathematics) ,Settore FIS/01 - Fisica Sperimentale ,Extrapolation ,Condensed Matter Physics ,Power law ,confinement time ,law.invention ,law ,scaling laws ,genetic programming ,Statistical physics ,tokamaks ,Symbolic regression ,Reduction (mathematics) ,symbolic regression ,Scaling ,power laws ,nuclear fusion ,Dimensionless quantity - Abstract
The extrapolation of the energy confinement time to the next generation of devices has been investigated both theoretically and experimentally for several decades in the tokamak community. Various scaling expressions have been proposed using dimensional and dimensionless quantities. They are all based on the assumption that the scalings are in power law form. In this paper, an innovative methodology is proposed to extract the scaling expressions for the energy confinement time in tokamaks directly from experimental databases, without any previous assumption about the mathematical form of the scalings. The approach to obtain the scaling expressions is based on genetic programming and symbolic regression. These techniques have been applied to the ITPA database of H-mode discharges and the results have been validated with a series of established statistical tools. The soundest results, using dimensional variables, are not in the form of power laws but contain a multiplicative saturation term. Also the scalings, expressed in terms of the traditional dimensionless quantities, are not in power law form and contain additive saturation terms. The extrapolation to ITER of both dimensional and dimensionless quantities indicate that the saturation effects are quite significant and could imply a non-negligible reduction in the confinement time to be expected in the next generation of devices. The results obtained with the proposed techniques therefore motivate a systematic revisiting of the scaling expressions for plasma confinement in tokamaks.
- Published
- 2015
- Full Text
- View/download PDF
17. A Statistical Analysis of the Scaling Laws for the Confinement Time Distinguishing between Core and Edge
- Author
-
Andrea Murari, Ivan Lupelli, Michela Gelfusa, Emmanuele Peluso, and Pasquale Gaudio
- Subjects
Tokamak ,Settore FIS/01 - Fisica Sperimentale ,Mode (statistics) ,Genetic programming ,Physics and Astronomy(all) ,Edge (geometry) ,Power law ,Interpretation (model theory) ,law.invention ,Nonlinear system ,law ,H mode scaling ,Statistical physics ,edge and core confinement ,Symbolic regression ,symbolic regression ,Mathematics - Abstract
The H mode of confinement in Tokamaks is characterized by a thin region of high gradients, located at the edge of the plasma and called the Edge Transport Barrier. Even if various theoretical models have been proposed for the interpretation of the edge physics, the main empirical scaling laws of the plasma confinement time are expressed in terms of global plasma parameters and they do not discriminate between the edge and core regions. Moreover all the scaling laws are assumed to be power law monomials. In the present paper, a new methodology is proposed to investigate the validity of both assumptions. The approach is based on Symbolic Regression via Genetic Programming and allows first the extraction of the most statistically reliable models from the available experimental data in the ITPA database. Non linear fitting is then applied to the mathematical expressions found by Symbolic regression. The obtained scaling laws are compared with the traditional scalings in power law form. © 2014 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the ENEA Fusion Technical Unit.
- Published
- 2015
- Full Text
- View/download PDF
18. Overview of MAST results
- Author
-
M.R. O'Brien, K. Imada, I. Klimek, S. Saarelma, A.J. Thornton, Matthew Carr, John Caughman, A. R. Field, L. V. Wyk, N. Thomas-Davies, M. Cox, D. Muir, Stanislas Pamela, E.D. Fredrickson, David Dickinson, James W. Bradley, J. R. Harrison, S. Lisgo, Vladimir Shevchenko, J. Chorley, B. Huang, R. O. Dendy, A. W. Morris, G. Naylor, Stanley Kaye, M. Kocan, M. Romanelli, J. Brunner, K. G. McClements, T.S. Bigelow, Alexander Schekochihin, Simon Freethy, Clive Michael, C. M. Roach, N. J. Conway, W. A. Peebles, E. Havlickova, Bogdan Hnat, S. S. Henderson, William Dorland, Takuma Yamada, Volker Naulin, C. Gurl, M. Peng, R. V. Perez, Benjamin Daniel Dudson, J. Storrs, S. Zoletnik, Mario Podesta, V. A. Rozhansky, P. Cahyna, W. Guttenfelder, C. Ham, Gen Motojima, Yuichi Takase, S. A. Silburn, G. Taylor, R. J. Akers, H. Leggate, Hajime Tanaka, K. J. Gibson, Bruce Lipschultz, N. Ben Ayed, O. M. Jones, J. Horacek, Romualdo Martín, Neal Crocker, A. V. Danilov, R. Scannell, D. L. Keeling, Eric Nardon, C. D. Challis, Matthew Lilley, S. D. Pinches, M. Price, L. Appel, John Howard, Daniel Thomas, J. Hawke, A. Kirk, Otto Asunta, T. O'Gorman, S. Allan, Brendan M. Crowley, Matthew Reinke, S. Sangaroon, H. R. Wilson, G. P. Maddison, J. Milnes, M. Valovic, H. F. Meyer, Ivan Lupelli, Ray M. Sharples, T. C. Hender, Marco Cecconello, Yang Liu, L. Piron, D. Harting, S. J. Diem, Jonathan Graves, H. J. C. Oliver, Greg Colyer, J. C. Hillesheim, Nick Walkden, J. Simpson, J. Adamek, S. E. Sharapov, G. Fishpool, A. Patel, Sandra C. Chapman, M. Turnyanskiy, Anders Nielsen, S. Elmore, N. C. Hawkes, D. S. Darrow, B. Lomanowski, L. Garzotti, Edmund Highcock, D. Dunai, R. G. L. Vann, Luke Easy, Young-chul Ghim, Fulvio Militello, Y. Ren, A. N. Saveliev, David Taylor, W. Boeglin, J. R. Robinson, L. Pangione, Yasushi Ono, I. T. Chapman, Michael Barnes, W. A. Cooper, B. Lloyd, Felix I. Parra, J. Holgate, Michael F. J. Fox, A. Meakins, Ahmed Diallo, Ben F. McMillan, G. Cunningham, Hiroshi Tanabe, G.J. McArdle, and J. Mailloux
- Subjects
Physics ,Nuclear and High Energy Physics ,Mega Ampere Spherical Tokamak ,Divertor ,Magnetic confinement fusion ,Plasma ,Collisionality ,Condensed Matter Physics ,7. Clean energy ,Resonant magnetic perturbations ,symbols.namesake ,Heat flux ,Physics::Plasma Physics ,symbols ,Langmuir probe ,Atomic physics - Abstract
The Mega Ampère Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number n RMP = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating n RMP = 3 RMPs. n RMP = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with n RMP = 4 than n RMP = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L–H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with ‘classical’ fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W−1) has been achieved in solenoid-free start-up. A new proton detector has characterized escaping fusion products. Langmuir probes and a high-speed camera suggest filaments play a role in particle transport in the private flux region whilst coherence imaging has measured scrape-off layer (SOL) flows. BOUT++ simulations show that fluxes due to filaments are strongly dependent on resistivity and magnetic geometry of the SOL, with higher radial fluxes at higher resistivity. Finally, MAST Upgrade is due to begin operation in 2016 to support ITER preparation and importantly to operate with a Super-X divertor to test extended leg concepts for particle and power exhaust.
- Published
- 2015
19. Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall
- Author
-
Ivan Lupelli, L. Garzotti, I. Voitsekhovitch, Istvan Pusztai, M. J. Pueschel, Sara Moradi, Clarisse Bourdelle, and M. Romanelli
- Subjects
Nuclear and High Energy Physics ,Jet (fluid) ,Materials science ,Plasma parameters ,Velocity gradient ,Inner core ,FOS: Physical sciences ,Atmospheric-pressure plasma ,Plasma ,Mechanics ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Instability ,Physics - Plasma Physics ,010305 fluids & plasmas ,Ion ,Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,0103 physical sciences ,Physics::Space Physics ,010306 general physics - Abstract
The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by $\mathbf{E}\times\mathbf{B}$ rotation shear., accepted for publication in Nuclear Fusion
- Published
- 2014
20. An alternative approach to the determination of scaling law expressions for the L-H transition in Tokamaks utilizing classification tools instead of regression
- Author
-
Jesús Vega, Pasquale Gaudio, Michela Gelfusa, Ivan Lupelli, and Andrea Murari
- Subjects
power law ,Artificial neural network ,Settore FIS/01 - Fisica Sperimentale ,Boundary (topology) ,Regression analysis ,L-H threshold ,Condensed Matter Physics ,neural networks ,Synthetic data ,support vector machines ,Reduction (complexity) ,Support vector machine ,Moment (mathematics) ,Nuclear Energy and Engineering ,Algorithm ,Complement (set theory) - Abstract
A new approach to determine the power law expressions for the threshold between the H and L mode of confinement is presented. The method is based on two powerful machine learning tools for classification: neural networks and support vector machines. Using as inputs clear examples of the systems on either side of the transition, the machine learning tools learn the input–output mapping corresponding to the equations of the boundary separating the confinement regimes. Systematic tests with synthetic data show that the machine learning tools provide results competitive with traditional statistical regression and more robust against random noise and systematic errors. The developed tools have then been applied to the multi-machine International Tokamak Physics Activity International Global Threshold Database of validated ITER-like Tokamak discharges. The machine learning tools converge on the same scaling law parameters obtained with non-linear regression. On the other hand, the developed tools allow a reduction of 50% of the uncertainty in the extrapolations to ITER. Therefore the proposed approach can effectively complement traditional regression since its application poses much less stringent requirements on the experimental data, to be used to determine the scaling laws, because they do not require examples exactly at the moment of the transition.
- Published
- 2014
- Full Text
- View/download PDF
21. Validation of equilibrium tools on the COMPASS tokamak
- Author
-
Ivan Lupelli, L. C. Appel, M. Peterka, Matthias Komm, Jean-Francois Artaud, Blaise Faugeras, Jakub Urban, Josef Havlicek, Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] ( ASCR ), Culham Centre for Fusion Energy ( CCFE ), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire Jean Alexandre Dieudonné ( JAD ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Control, Analysis and Simulations for TOkamak Research ( CASTOR ), Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Charles University [Prague], Czech Academy of Sciences [Prague] (CAS), Culham Centre for Fusion Energy (CCFE), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Control, Analysis and Simulations for TOkamak Research (CASTOR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Charles University [Prague] (CU), Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
[ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulation ,Tokamak ,Boundary (topology) ,FOS: Physical sciences ,equilibrium ,COMPASS ,law.invention ,law ,Compass ,General Materials Science ,Magnetohydrodynamic drive ,tokamak ,ComputingMilieux_MISCELLANEOUS ,Civil and Structural Engineering ,Physics ,COMPASS tokamak ,Mechanical Engineering ,Experimental data ,Plasma ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Physics - Plasma Physics ,Computational physics ,Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,PACS: 52.55.Fa, 52.65.Kj ,Magnetohydrodynamics - Abstract
Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague. MHD equilibrium is a fundamental property of the tokamak plasma, whose knowledge is required for many diagnostics and modelling tools. Proper benchmarking and validation of equilibrium tools is thus key for interpreting and planning tokamak experiments. We present here benchmarks and comparisons to experimental data of the EFIT++ reconstruction code [L.C. Appel et al., EPS 2006, P2.184], the free-boundary equilibrium code FREEBIE [J.-F. Artaud, S.H. Kim, EPS 2012, P4.023], and a rapid plasma boundary reconstruction code VacTH [B. Faugeras et al., PPCF 56, 114010 (2014)]. We demonstrate that FREEBIE can calculate the equilibrium and corresponding poloidal field (PF) coils currents consistently with EFIT++ reconstructions from experimental data. Both EFIT++ and VacTH can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. Hence, VacTH is suitable for real-time control. Optimum reconstruction parameters are estimated., Comment: SOFT 2014 conference, submitted to Fusion Engineering and Design
- Published
- 2014
- Full Text
- View/download PDF
22. Dust tracking techniques applied to the STARDUST facility: First results
- Author
-
Ivan Lupelli, Luca Antonelli, Pasquale Gaudio, Massimo Camplani, Emmanuele Peluso, Carlo Bellecci, M Carestia, D. Scarpellini, F Conetta, Andrea Malizia, Michela Gelfusa, Luis Salgado, and Maria Richetta
- Subjects
Accident prevention ,020209 energy ,Nuclear engineering ,Settore ING-IND/12 - Misure Meccaniche e Termiche ,Physical characteristics ,Velocity ,Explosions ,02 engineering and technology ,Tracking (particle physics) ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,Nuclear physics ,Particle image velocimetries ,Nuclear fusion plants ,Cabin pressurization ,Image processing ,Dust tracking ,Computer vision ,Particle image velocimetry (PIV) ,Safety ,Security ,Nuclear Energy and Engineering ,Materials Science (all) ,Civil and Structural Engineering ,Mechanical Engineering ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Nuclear fusion ,General Materials Science ,Laser beams ,Experimental campaign ,Telecomunicaciones ,Pressurization rates ,Settore FIS/01 - Fisica Sperimentale ,Nuclear energy ,Dust ,Nuclear fusion reactors ,Frame rate ,Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin) ,Safety and securities ,Environmental science ,Particle ,Experiments ,Velocity, Experimental campaign ,Security, Dust - Abstract
An important issue related to future nuclear fusion reactors fueled with deuterium and tritium is the creation of large amounts of dust due to several mechanisms (disruptions, ELMs and VDEs). The dust size expected in nuclear fusion experiments (such as ITER) is in the order of microns (between 0.1 and 1000 μm). Almost the total amount of this dust remains in the vacuum vessel (VV). This radiological dust can re-suspend in case of LOVA (loss of vacuum accident) and these phenomena can cause explosions and serious damages to the health of the operators and to the integrity of the device. The authors have developed a facility, STARDUST, in order to reproduce the thermo fluid-dynamic conditions comparable to those expected inside the VV of the next generation of experiments such as ITER in case of LOVA. The dust used inside the STARDUST facility presents particle sizes and physical characteristics comparable with those that created inside the VV of nuclear fusion experiments. In this facility an experimental campaign has been conducted with the purpose of tracking the dust re-suspended at low pressurization rates (comparable to those expected in case of LOVA in ITER and suggested by the General Safety and Security Report ITER-GSSR) using a fast camera with a frame rate from 1000 to 10,000 images per second. The velocity fields of the mobilized dust are derived from the imaging of a two-dimensional slice of the flow illuminated by optically adapted laser beam. The aim of this work is to demonstrate the possibility of dust tracking by means of image processing with the objective of determining the velocity field values of dust re-suspended during a LOVA.
- Published
- 2014
23. Numerical study of air jet flow field during a loss of vacuum
- Author
-
Michela Gelfusa, Ivan Belluzzo, Maria Richetta, Andrea Malizia, Ivan Lupelli, and Pasquale Gaudio
- Subjects
Accident prevention ,Materials science ,LOVA ,Characteristic length ,Numerical models ,Nearly incompressible ,Velocity ,Computational fluid dynamics ,Reynolds number ,Physics::Fluid Dynamics ,symbols.namesake ,Cabin pressurization ,Jets ,Surface shear stress ,General Materials Science ,Supersonic speed ,Magnetoplasma ,Civil and Structural Engineering ,Turbulence ,Mechanical Engineering ,Settore FIS/01 - Fisica Sperimentale ,Accidents ,Computer simulation ,Dust ,Flow fields ,Thermodynamics ,Turbulence models ,Velocity, Characteristic length ,Maintenance operations ,Numerical results ,Physical phenomena ,Thermodynamics property, Vacuum technology ,Mechanics ,Thermodynamics property ,Vacuum technology ,Nuclear Energy and Engineering ,Drag ,Heat transfer ,Compressibility ,symbols ,Settore ING-IND/06 - Fluidodinamica - Abstract
Air leakage into tokamaks vacuum vessel during plasma burning or maintenance operations may lead to the fast pressurization of the vacuum vessel. A fraction of the dust inventory present in the vacuum vessel can be mobilized threatening the safety of staff and workers on site, the local population and the environment. A numerical analysis of the physical phenomena involved in such accidents is necessary in order to predict the thermal-fluid dynamics into the vacuum vessel after air ingress and consequent dust mobilization. Accuracy of the numerical results is also required in order to provide a sufficient margin in the design of the safety systems. The numerical simulation of Loss of Vacuum Accident (LOVA) scenarios is a challenging task for today numerical methods and models because it involves large volumes, multiphase flows ranging from highly supersonic to nearly incompressible and contemporary heat transfer. The drag force exerted on the dust by a moving fluid due to the viscous surface shear stress and pressure distribution around the dust particles depends mainly on the Reynolds number, i.e. property of the fluid (kinematic viscosity), its mean velocity and characteristic length of the geometry. For a fixed geometry, the key parameter for the dust mobilization is the velocity field of the continuous phase, and its thermodynamics properties, inside the vacuum vessel. In this contribution, the authors present and discuss the results of numerical simulations of air jet flow field during a LOVA with particular attention to the comparison with the experimental data and differences arising from the use of different types of grid resolution and turbulence models (Zero-Equation, k – ω and SST).
- Published
- 2014
24. Influence of plasma diagnostics and constraints on the quality of equilibrium reconstructions on Joint European Torus
- Author
-
M. Romanelli, A. Murari, S. Schmuck, V. Drozdov, T. Craciunescu, B. Sieglin, Ivan Lupelli, Jet-Efda Contributors, A. Meigs, M. Baruzzo, Pasquale Gaudio, M. Brix, Michela Gelfusa, Emmanuele Peluso, and N. Hawkes
- Subjects
High-temperature plasmas ,Tokamak ,Thermonuclear fusion ,Independent measurement ,Stark effect ,Last closed flux surfaces ,Joint European Torus ,Degrees of freedom (physics and chemistry) ,Equilibrium reconstruction ,Atmospheric-pressure plasma ,Plasma diagnostics ,law.invention ,Axisymmetric configurations ,law ,Physics::Plasma Physics ,Plasma simulation ,Grad-Shafranov equations ,Magnetoplasma ,Instrumentation ,Fusion reactions ,Physics ,Ellipsometry ,Safety factor ,Settore FIS/01 - Fisica Sperimentale ,Motional stark effects ,Mechanics ,Plasma ,Magnetic reconstruction ,Motional stark effects, Electric discharges ,Polarimeters ,Repair ,Stark effect, Magnetoplasma ,Electric discharges ,Atomic physics - Abstract
One of the main approaches to thermonuclear fusion relies on confining high temperature plasmas with properly shaped magnetic fields. The determination of the magnetic topology is, therefore, essential for controlling the experiments and for achieving the required performance. In Tokamaks, the reconstruction of the fields is typically formulated as a free boundary equilibrium problem, described by the Grad-Shafranov equation in toroidal geometry and axisymmetric configurations. Unfortunately, this results in mathematically very ill posed problems and, therefore, the quality of the equilibrium reconstructions depends sensitively on the measurements used as inputs and on the imposed constraints. In this paper, it is shown how the different diagnostics (Magnetics Measurements, Polarimetry and Motional Stark Effect), together with the edge current density and plasma pressure constraints, can have a significant impact on the quality of the equilibrium on JET. Results show that both the Polarimetry and Motional Stark Effect internal diagnostics are crucial in order to obtain reasonable safety factor profiles. The impact of the edge current density constraint is significant when the plasma is in the H-mode of confinement. In this plasma scenario the strike point positions and the plasma last closed flux surface can change even by centimetres, depending on the edge constraints, with a significant impact on the remapping of the equilibrium-dependent diagnostics and of pedestal physics studies. On the other hand and quite counter intuitively, the pressure constraint can severely affect the quality of the magnetic reconstructions in the core. These trends have been verified with several JET discharges and consistent results have been found. An interpretation of these results, as interplay between degrees of freedom and available measurements, is provided. The systematic analysis described in the paper emphasizes the importance of having sufficient diagnostic inputs and of properly validating the results of the codes with independent measurements.
- Published
- 2013
- Full Text
- View/download PDF
25. Statistical analysis of plasma shape influence on the power threshold to access the H-mode
- Author
-
Ivan Lupelli, Andrea Murari, Michela Gelfusa, and Pasquale Gaudio
- Subjects
Physics ,Nuclear and High Energy Physics ,Monomial ,Tokamak ,Settore FIS/01 - Fisica Sperimentale ,Mode (statistics) ,Magnetic confinement fusion ,Plasma triangularity ,Power law ,L-H transition ,law.invention ,Power (physics) ,High-confinement mode ,Plasma elongation ,law ,Confinement regimes ,Power threshold ,Statistical physics ,Instrumentation ,Scaling - Abstract
In the vast majority of tokamaks, the high confinement mode (H mode) has been systematically achieved and studied. The transition to the H-mode is a very complex phenomenon but it can be represented by the relation between a limited number of macroscopic quantities. The predicted power ( P Thresh ) for accessing the H-mode is generally estimated by statistical analysis of multi-machine experimental data and typically presented in terms of equations in power law monomial form. Even if the positive effects of the plasma shape on the confinement time have been clearly documented, the dependence of the P Thresh on elongation and triangularity is still an aspect no completely clarified. The objective of this paper is to assess whether the P Thresh dependency on the shape of the plasma can be derived by a statistical approach using a recent version of ITPA International Global Threshold Data Base (IGDBTHv6b). A statistical method to select relevant macroscopic quantities in the candidate models for the scaling of P Thresh is presented and a multi-machine scaling law, using non-linear regression techniques, is derived.
- Published
- 2013
- Full Text
- View/download PDF
26. Non-power law scaling for access to the H-mode in tokamaks via symbolic regression
- Author
-
Michela Gelfusa, Pasquale Gaudio, Ivan Lupelli, and Andrea Murari
- Subjects
Nuclear and High Energy Physics ,Settore FIS/01 - Fisica Sperimentale ,Mode (statistics) ,Extrapolation ,Magnetic confinement fusion ,A priori and a posteriori ,Genetic programming ,Statistical physics ,Condensed Matter Physics ,Symbolic regression ,Power law ,Scaling - Abstract
The power threshold (PThresh) to access the H-mode in tokamaks remains a subject of active research, because up to now no theoretical relation has proved to be general enough to reliably interpret the L–H transition. Over the last few decades, much effort has therefore been devoted to deriving empirical scalings, assuming ‘a priori’ a power-law model structure. In this paper, an empirical scaling of PThresh without any a priori assumption about the model structure, i.e. about the functional form, is derived. Symbolic regression via genetic programming is applied to the latest version multi-machine International Tokamak Physics Activity International Global Power Threshold Data Base of validated ITER-like discharges. The derived model structure of the scaling for the global database is not in a power law form and includes a term that indicates saturation of PThresh with the strength of the toroidal field, plasma density and elongation. Furthermore, the single machine analysis of the database for the most representative machines of the international fusion scientific program demonstrates that the model structures are similar but the model parameters are different. The better extrapolation capability of the identified model structures with the proposed methodology is verified with a specific analysis of JET data at two different current regimes. The PThresh values extrapolated to ITER using the derived empirical model structures are a factor of two lower than those of traditional scaling laws and are predicted with a significantly better confidence.
- Published
- 2013
- Full Text
- View/download PDF
27. Preliminary investigation of the use of visible images to validate the magnetic reconstruction of the boundary on JET
- Author
-
Pasquale Gaudio, Teddy Craciunescu, Michela Gelfusa, Nick Hawkes, Ivan Lupelli, Andrea Murari, Emmanuele Peluso, and JET-EFDA Contributors
- Subjects
Physics ,Jet (fluid) ,Tokamak ,business.industry ,Mechanical Engineering ,Settore FIS/01 - Fisica Sperimentale ,EFIT reconstruction ,Boundary (topology) ,Plasma ,Plasma boundary ,Magnetic flux ,law.invention ,Magnetic field ,Phase congruency ,Optics ,Image processing ,Nuclear Energy and Engineering ,Position (vector) ,law ,General Materials Science ,business ,Civil and Structural Engineering - Abstract
The reconstruction of the magnetic fields, which produce the confinement of the plasma, is an essential ingredient of tokamaks, since they affect both the operation of the devices and the interpretation of the physics results. This work reports a preliminary investigation to determinate whether the position of last magnetic flux surface can be evaluated from the images collected by JET visible cameras. To this end, the frames of some JET visible cameras have been analyzed with the phase congruency method to extract the position of the emission at the boundary on the high field side. The results of the comparison between the optical reconstruction of the plasma boundary obtained from the cameras and the separatrix position derived from the equilibrium code EFIT has been performed. Depending on the measurements used as inputs to EFIT, the difference between the two estimates of the separatrix position is below 10 cm.
- Published
- 2013
- Full Text
- View/download PDF
28. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility
- Author
-
Andrea Malizia, Ivan Lupelli, Pasquale Gaudio, Maria Richetta, Miriam Benedetti, Maria Teresa Porfiri, and Porfiri, M. T.
- Subjects
Tokamak ,Field (physics) ,Large vacuum systems ,Vacuum ,Nuclear engineering ,Different pressurization rates ,Dust mobilization ,Numerical simulation ,Computational fluid dynamics ,law.invention ,Nuclear physics ,Vacuum condition ,Loss of Vacuum Accident ,LES ,Nuclear fusion safety ,Experiments ,Cabin pressurization ,law ,Nuclear fusion ,General Materials Science ,Fluid dynamic field ,Nuclear fusion devices ,Vacuum condition, Accidents ,Computer simulation ,Dust ,Large eddy simulation ,Nuclear energy ,Vacuum, Vacuum technology ,Civil and Structural Engineering ,business.industry ,Mechanical Engineering ,Settore FIS/01 - Fisica Sperimentale ,Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin) ,Vacuum technology ,Nuclear Energy and Engineering ,Accidents ,Environmental science ,business - Abstract
The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks. © 2013 Elsevier B.V.
- Published
- 2013
29. A new class of indicators for the model selection of scaling laws in nuclear fusion
- Author
-
Pasquale Gaudio, Michela Gelfusa, Jesús Vega, Ivan Lupelli, Didier Mazon, and Andrea Murari
- Subjects
Mathematical optimization ,Scaling laws ,Computer science ,Mechanical Engineering ,Model selection ,Settore FIS/01 - Fisica Sperimentale ,Bayesian probability ,Extrapolation ,Data analysis ,FOS: Physical sciences ,Image processing ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,Frequentist inference ,Bayesian information criterion ,Entropy (information theory) ,Nuclear fusion ,General Materials Science ,Akaike information criterion ,Civil and Structural Engineering - Abstract
The development of computationally efficient model selection strategies represents an important problem facing the analysis of Nuclear Fusion experimental data, in particular in the field of scaling laws for the extrapolation to future machines, and image processing. In this paper, a new model selection indicator, named Model Falsification Criterion (MFC), will be presented and applied to the problem of choosing the most generalizable scaling laws for the power threshold to access the H-mode of confinement in Tokamaks. The proposed indicator is based on the properties of the model residuals, their entropy and an implementation of the data falsification principle. The model selection ability of the proposed criterion will be demonstrated in comparison with the most widely used frequentist (Akaike Information Criterion) and bayesian (Bayesian Information Criterion) indicators., Comment: 4 pages, 2 figures
- Published
- 2013
- Full Text
- View/download PDF
30. Axisymmetric oscillations at L–H transitions in JET: M-mode
- Author
-
P. Drewelow, D. Dodt, E. R. Solano, P. Buratti, A.C.A. Figueiredo, I. Balboa, D. Grist, Stéphane Devaux, S. A. Silburn, Jet Contributors, M. Baruzzo, S.N. Gerasimov, M.F. Stamp, Carlos A. Silva, S. Schmuck, Lorenzo Frassinetti, C. F. Maggi, B. Sieglin, J. Morris, S. Marsen, D. I. Refy, R. Coelho, L. Meneses, Ivan Lupelli, J. C. Hillesheim, E. Delabie, N. Vianello, F.G. Rimini, A. Boboc, Isabel L. Nunes, JET Contributors, and Buratti, P.
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Tokamak ,MHD ,Oscillation ,Rotational symmetry ,Plasma ,Condensed Matter Physics ,H-mode ,L-H transition ,pedestal ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Physics::Plasma Physics ,law ,0103 physical sciences ,Magnetohydrodynamics ,Atomic physics ,010306 general physics - Abstract
L to H transition studies at JET have revealed an n = 0, m = 1 magnetic oscillation starting immediately at the L to H transition (called M-mode for brevity). While the magnetic oscillation is present a weak ELM-less H-mode regime is obtained, with a clear increase of density and a weak electron temperature pedestal. It is an intermediate state between L and H-mode. In ICRH heated plasmas or low density NBI plasmas the magnetic mode and the pedestal can remain steady (with small oscillations) for the duration of the heating phase, of order 10 s or more. The axisymmetric magnetic oscillation has period ~0.5–2 ms, and poloidal mode number m = 1: it looks like a pedestal localised up/down oscillation, although it is clearly a natural oscillation of the plasma, not driven by the position control system. Electron cyclotron emission, interferometry, reflectometry and fast Li beam measurements locate the mode in the pedestal region. D α , fast infrared camera and Langmuir probe measurements show that the mode modulates heat and particle fluxes to the target. The mode frequency appears to scale with the poloidal Alfvén velocity, and not with sound speed (i.e. it is not a geodesic acoustic mode). A heuristic model is proposed for the frequency scaling of the mode. We discuss the relationship between the M-mode and other related observations near the L–H transition.
- Published
- 2016
- Full Text
- View/download PDF
31. Recent improvements of the JET lithium beam diagnostic
- Author
-
Ivan Lupelli, M. Brix, D. Dunai, T. Szabolics, D. Dodt, P. D. Morgan, S. Marsen, Carlos A. Silva, M. Stamp, K-D. Zastrow, G. Petravich, B. Meszaros, D. I. Refy, T. F. Melson, S. Zoletnik, and Jet-Efda Contributors
- Subjects
Interference filter ,Physics ,Spectrometer ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,Avalanche photodiode ,Ion gun ,Photodiode ,law.invention ,Optics ,chemistry ,law ,Physics::Accelerator Physics ,Lithium ,Plasma diagnostics ,business ,Instrumentation ,Beam (structure) - Abstract
A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).
- Published
- 2012
32. New Approximation and Calibration Methods to Provide Routine Real-Time Polarimetry on JET
- Author
-
Michela Gelfusa, Andrea Murari, Pasquale Gaudio, Alexandru Boboc, Didler Mazon, Fabio Avino, Ivan Lupelli, F. P. Orsitto, O. Tudisco, and JET-EFDA Contributors
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,business.industry ,Settore FIS/01 - Fisica Sperimentale ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Boundary (topology) ,real-time ,Polarimeter ,Condensed Matter Physics ,Optics ,Optical path ,Line (geometry) ,Calibration ,Plasma diagnostics ,business ,Algorithm ,Line integrated density ,polarimetry - Abstract
The increasing importance of providing reliable polarimetric measurements in real time, for both machine protection and plasma control, has motivated the development of a quick version of the calibration algorithms for JET polarimeter. This new code, which interprets the calibration procedure performed before each shot, is based on a physical equivalent model of the diagnostic optical path and is valid for any operational regime of JET. It provides results before the plasma breakdown, and, with its estimates of the optical paths parameters, the polarimetric measurements have an accuracy more than sufficient for real-time purposes. New approximate equations have been validated in order to obtain the line integrated density from the newly calibrated horizontal chords, so that also these polarimetric measurements can also be used for density feedback and machine protection. The availability of reliable polarimetric measurements in real time opens new perspectives also to the determination of the plasma boundary, the magnetic equilibrium, and their use in advanced feedback control schemes.
- Published
- 2012
- Full Text
- View/download PDF
33. A statistical methodology to derive the scaling law for the H-mode power threshold using a large multi-machine database
- Author
-
Jesús Vega, Andrea Murari, Pasquale Gaudio, Ivan Lupelli, and Michela Gelfusa
- Subjects
Nuclear and High Energy Physics ,Variables ,Database ,Computer science ,Model selection ,media_common.quotation_subject ,Bayesian probability ,Settore FIS/01 - Fisica Sperimentale ,Regression analysis ,Condensed Matter Physics ,computer.software_genre ,Bayesian information criterion ,Akaike information criterion ,Cluster analysis ,Scaling ,computer ,media_common - Abstract
In this paper, a refined set of statistical techniques is developed and then applied to the problem of deriving the scaling law for the threshold power to access the H-mode of confinement in tokamaks. This statistical methodology is applied to the 2010 version of the ITPA International Global Threshold Data Base v6b(IGDBTHv6b). To increase the engineering and operative relevance of the results, only macroscopic physical quantities, measured in the vast majority of experiments, have been considered as candidate variables in the models. Different principled methods, such as agglomerative hierarchical variables clustering, without assumption about the functional form of the scaling, and nonlinear regression, are implemented to select the best subset of candidate independent variables and to improve the regression model accuracy. Two independent model selection criteria, based on the classical (Akaike information criterion) and Bayesian formalism (Bayesian information criterion), are then used to identify the most efficient scaling law from candidate models. The results derived from the full multi-machine database confirm the results of previous analysis but emphasize the importance of shaping quantities, elongation and triangularity. On the other hand, the scaling laws for the different machines and at different currents are different from each other at the level of confidence well above 95%, suggesting caution in the use of the global scaling laws for both interpretation and extrapolation purposes.
- Published
- 2012
- Full Text
- View/download PDF
34. Loss of vacuum accident (LOVA): comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation
- Author
-
Pasquale Gaudio, Maria Richetta, Carlo Bellecci, Andrea Malizia, Ivan Lupelli, R Quaranta, and Maria Teresa Porfiri
- Subjects
business.industry ,Mechanical Engineering ,Nuclear engineering ,Divertor ,Flow (psychology) ,Settore FIS/01 - Fisica Sperimentale ,Fusion power ,Computational fluid dynamics ,Coolant ,Aerosol ,Nuclear Energy and Engineering ,Cabin pressurization ,Fluent ,Environmental science ,General Materials Science ,business ,Civil and Structural Engineering - Abstract
A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. Several mechanisms resulting from material response to plasma bombardment in normal and off-normal conditions are responsible for generating dust of micron and sub-micron length scales inside the VV (Vacuum Vessel) of experimental fusion facilities. The loss of coolant accidents (LOCA), loss of coolant flow accidents (LOFA) and loss of vacuum accidents (LOVA) are types of accidents, expected in experimental fusion reactors like ITER, that may jeopardize components and plasma vessel integrity and cause dust mobilization risky for workers and public. The air velocity is the driven parameter for dust resuspension and its characterization, in the very first phase of the accidents, is critical for the dust release. To study the air velocity trend a small facility, Small Tank for Aerosol Removal and Dust (STARDUST), was set up at the University of Rome “Tor Vergata”, in collaboration with ENEA Frascati laboratories. It simulates a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air inlet from two different positions of the leak: at the equatorial port level and at the divertor port level. The velocity magnitude in STARDUST was investigated in order to map the velocity field by means of a punctual capacitive transducer placed inside STARDUST without obstacles. FLUENT was used to simulate the flow behavior for the same LOVA scenarios used during the experimental tests. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected for the first four seconds, because at the beginning of the experiments the maximum velocity values (that could cause the almost complete dust mobilization) have been measured. In this paper the authors present and discuss the computer-simulation data and compare them with data collected in STARDUST.
- Published
- 2011
35. Characterization of lif-based soft x-ray imaging detectors by confocal fluorescence microscopy
- Author
-
Rosa Maria Montereali, Enrico Nichelatti, Pasquale Gaudio, Ivan Lupelli, Francesca Bonfigli, Maria Richetta, and Maria Aurora Vincenti
- Subjects
Fluorescence-lifetime imaging microscopy ,Materials science ,Microscope ,business.industry ,Confocal ,Resolution (electron density) ,Settore FIS/01 - Fisica Sperimentale ,Lithium fluoride ,law.invention ,chemistry.chemical_compound ,Optics ,chemistry ,law ,Light sheet fluorescence microscopy ,Microscopy ,Fluorescence microscope ,business - Abstract
X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.
- Published
- 2010
36. Non-linear MHD simulations of ELMs in JET and quantitative comparisons to experiments
- Author
-
Alexander Lukin, Stefan Matejcik, Soare Sorin, Francesco Romanelli, Stéphane Devaux, Emilio Blanco, Bohdan Bieg, Matthias Hoelzl, Ivan Lupelli, Lorenzo Frassinetti, Vladislav Plyusnin, José Vicente, Alberto Loarte, Emilia R Solano, Rajnikant Makwana, CHIARA MARCHETTO, Francois Orain, Marco Wischmeier, Choong-Seock Chang, Aneta Gójska, Manuel Garcia-munoz, JET Contributors, Science and Technology of Nuclear Fusion, and Magneto-Hydro-Dynamic Stability of Fusion Plasmas
- Subjects
Electron density ,Tokamak ,MHD ,JOREK ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Physics::Plasma Physics ,law ,0103 physical sciences ,Magnetohydrodynamic drive ,010306 general physics ,Physics ,edge-localised-modes ,Jet (fluid) ,non linear ,Divertor ,Mechanics ,simulation ,Condensed Matter Physics ,Nonlinear system ,Nuclear Energy and Engineering ,Heat flux ,JET ,Atomic physics ,Magnetohydrodynamics - Abstract
A subset of JET ITER-like wall (ILW) discharges, combining electron density and temperature as well as divertor heat flux measurements, has been collected for the validation of non-linear magnetohydrodynamic (MHD) simulations of edge-localised-modes (ELMs). This permits a quantitative comparison of simulation results against experiments, which is required for the validation of predicted ELM energy losses and divertor heat fluxes in future tokamaks like ITER. This paper presents the first results of such a quantitative comparison, and gives a perspective of what will be necessary to achieve full validation of non-linear codes like JOREK. In particular, the present study highlights the importance of pre-ELM equilibria and parallel energy transport models in MHD simulations, which form the underlying basis of ELM physics.
- Published
- 2015
- Full Text
- View/download PDF
37. Corrigendum: Runaway electron beam generation and mitigation during disruptions at JET-ILW (2015 Nucl. Fusion 55 093013)
- Author
-
A. Boboc, Michael Lehnen, I. H. Coffey, Diogo Alves, V. Riccardo, A. Fil, J. Decker, G. F. Matthews, Stéphane Devaux, G. Sips, Eric Nardon, J. Mlynář, S. Brezinsek, R. Koslowski, C. Perez von Thun, E. Nilsson, A. E. Shevelev, C. Reux, S.N. Gerasimov, A. Martin de Aguilera, U. Kruezi, Ivan Lupelli, B. Alper, S. Jachmich, Jet Contributors, P. Drewelow, A. Manzanares, V. Plyusnin, B. Bazylev, E.M. Khilkevitch, Eva Belonohy, P. de Vries, V. G. Kiptily, F. Saint-Laurent, L. Giacomelli, P. J. Lomas, Carlo Sozzi, and JET Contributors
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Fusion ,Jet (fluid) ,Cathode ray ,Condensed Matter Physics - Published
- 2015
- Full Text
- View/download PDF
38. STARDUST experimental campaign and numerical simulations: influence of obstacles and temperature on dust resuspension in a vacuum vessel under LOVA
- Author
-
Pasquale Gaudio, Maria Teresa Porfiri, R Quaranta, Ivan Lupelli, Carlo Bellecci, Andrea Malizia, and Maria Richetta
- Subjects
Nuclear and High Energy Physics ,education.field_of_study ,Thermonuclear fusion ,Divertor ,Nuclear engineering ,Settore FIS/01 - Fisica Sperimentale ,Population ,Fusion power ,Condensed Matter Physics ,Cabin pressurization ,Thermal ,Limiter ,Environmental science ,Vacuum chamber ,education - Abstract
Activated dust mobilization during a Loss of Vacuum Accident (LOVA) is one of the safety concerns for the International Thermonuclear Experimental Reactor (ITER). Intense thermal loads in fusion devices occur during plasma disruptions, edge localized modes and vertical displacement events. They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER vacuum vessel (VV). These kinds of events can cause dust leakage outside the VV that represents a high radiological risk for the workers and the population. A small facility, Small Tank for Aerosol Removal and Dust (STARDUST), was set up at the ENEA Frascati laboratories to perform experiments concerning the dust mobilization in a volume with the initial conditions similar to those existing in ITER VV. The aim of this work was to reproduce a low pressurization rate (300 Pa s−1) LOVA event in a VV due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the influence of obstacles and walls temperature on dust resuspension during both maintenance (MC) and accident conditions (AC) (T walls = 25 °C MC, 110 °C AC). The dusts used were tungsten (W), stainless steel 316 (SS316) and carbon (C), similar to those produced inside the vacuum chamber in a fusion reactor when the plasma facing materials vaporize due to the high energy deposition. The experimental campaign has been carried out by introducing inside STARDUST facility an obstacle to simulate the presence of objects, such as divertor. In the obstacle a slit was cut to simulate the limiter–divertor gap inside ITER VV. In this paper experimental campaign results are shown in order to investigate how the divertor and limiter–divertor gap influence dust mobilization into a VV. A two-dimensional (2D) modelling of STARDUST was made using the CFD commercial code FLUENT, in order to get a preliminary overview of the fluid dynamics behaviour during a LOVA event and to justify the mobilization data. In addition, a numerical model was developed to compare numerical results with experimental ones.
- Published
- 2011
- Full Text
- View/download PDF
39. Density and magnetic fluctuations in type III-ELM pedestal evolution in JET: experimental and numerical characterization
- Author
-
Ivan Lupelli, J. C. Hillesheim, E. Delabie, Italo Predebon, C. F. Maggi, L. Meneses, Jet Contributors, Silvia Spagnolo, and G. De Masi
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,reflectometry ,pedestal flcutuations ,Plasma parameters ,Oscillation ,Joint European Torus ,Phase (waves) ,Condensed Matter Physics ,01 natural sciences ,Instability ,010305 fluids & plasmas ,Computational physics ,Pedestal ,Physics::Plasma Physics ,JET ,magnetic measurements ,turbulence measurements ,0103 physical sciences ,ITG ,Wavenumber ,gyrokinetic simulations ,010306 general physics - Abstract
Density and magnetic fluctuation measurements in low-β type-III ELM discharges are obtained in the Joint European Torus (JET). They are observed during the inter-ELM pedestal evolution, after the LH transition phase, at about 60–70 kHz. Density fluctuations are measured with a correlation reflectometer system installed on the low-field side and they are localized at the pedestal top. Magnetic fluctuations with a spatial scale are measured through a high resolution coil array. The main features and the relations with local plasma parameters are presented. The nature of these fluctuations is discussed along with linear gyrokinetic simulations. Ion temperature gradient (ITG) modes are the dominant instabilities in the frequency range of interest. In terms of radial localization, typical oscillation frequency and qualitative relation with the possible linear drive, ITG modes are consistent with the experimental density fluctuations measurements. Micro-tearing modes (MTMs), found unstable with a lower growth rate, appear a possible explanation for magnetic fluctuations in terms of typical wavenumbers and direction of propagation.
- Full Text
- View/download PDF
40. TRANSP modelling of total and local neutron emission on MAST
- Author
-
R. J. Akers, Göran Ericsson, I. Klimek, A. Meakins, O. M. Jones, Ivan Lupelli, D. L. Keeling, M. Gorelenkova, Marco Cecconello, and M. Turnyanskiy
- Subjects
Physics ,Nuclear and High Energy Physics ,Neutron count ,Neutron emission ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Plasma ,Condensed Matter Physics ,Collimated light ,Nuclear physics ,Mast (sailing) ,Physics::Plasma Physics ,Neutron flux ,Physics::Space Physics ,Nuclear Experiment - Abstract
The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)-for different plasma scenarios on MAST are reported. In addition, ...
- Full Text
- View/download PDF
41. Pellet fuelling with edge-localized modes controlled by external magnetic perturbations in MAST
- Author
-
G. Naylor, Ivan Lupelli, C. Gurl, L. Garzotti, M. Valovic, A. Kirk, A. R. Field, Daniel Dunai, and A.J. Thornton
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Materials science ,Density gradient ,Particle loss ,digestive, oral, and skin physiology ,Pellets ,FOS: Physical sciences ,Magnetic perturbation ,Mechanics ,Plasma ,Condensed Matter Physics ,Physics - Plasma Physics ,law.invention ,Plasma Physics (physics.plasm-ph) ,law ,Pellet - Abstract
The fuelling of plasmas by shallow frozen pellets with simultaneous mitigation of edge localised modes (ELM) by external magnetic perturbation is demonstrated on the MAST tokamak. Post-pellet particle loss is dominated by ELMs and inter-ELM gas fuelling. It is shown that the size of post-pellet ELMs can be controlled by external magnetic perturbations. Post-pellet ELMs remove particles from the large part of pellet deposition zone including the area with positive density gradient. The mechanism explaining this peculiarity of particle loss is suggested., Comment: 7 pages, 4 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IOP Publishing Ltd and IAEA are not responsible for any errors or omissions in this version of the manuscript or any version derived from it
- Full Text
- View/download PDF
42. Deep neural networks for plasma tomography with applications to JET and COMPASS
- Author
-
J. Denis, M. Tardocchi, Kiptily, M. Koubiti, M. Ghate, R. Michling, G. De Masi, T. Tala, M. Bassan, R. McAdams, S. Dowson, Antoine Merle, Seppo Koivuranta, O. J. Kwon, S. Mahesan, P. Sparapani, A. Malaquias, M. Tsalas, Gennady V. Miloshevsky, M. Vecsei, Michal Stano, E. Lerche, Štefan Matejčík, Piergiorgio Sonato, S. D. Pinches, A. Dal Molin, O. McCormack, B. Colling, F. Mink, Ph. Mertens, P. Drewelow, Nuno Cruz, D. Iglesias, Alessandro Zocco, K. Rathod, S. Collins, F. Koechl, James Buchanan, Andrew West, Francesco Maviglia, E. Stefanikova, David Taylor, B. Graham, T. Lunt, S. Meshchaninov, Arturo Buscarino, G. L. Ravera, Maide Bucolo, J. P. Thomas, S. Foley, B. Wakeling, N. Ashikawa, D. W. Robson, N. J. Conway, V. P. Lo Schiavo, Stefan Buller, Sergey Popovichev, M. Saleem, Jorge Luis Rodriguez, M. Wheatley, Gabriele Croci, Hugo Bufferand, J.F. Artaud, R. C. Felton, O. Kovanda, D. Hepple, K. Dylst, Gabor Szepesi, M. Oberkofler, G.J. van Rooij, N. Teplova, Istvan Cziegler, K. K. Kirov, S. Vartanian, Y. Xue, D. Nina, J. Bernardo, Lorenzo Figini, Guglielmo Rubinacci, Peter Lang, R. Scannell, N. C. Hawkes, P. Denner, Istvan Pusztai, D. D. Carvalho, Salvatore Ventre, A. Lescinskis, Afanasev, C. Hamlyn-Harris, Panagiotis Tolias, R. Vale, T. O'Gorman, S. Lesnoj, I.E. Day, Karol Malinowski, D. Carralero, N. Balshaw, Massimo Angelone, Michaele Freisinger, I. Monakhov, Jesús Vega, Jonathan Citrin, Antti Hakola, H. Patten, P. A. Simmons, Y. Austin, Sehyun Kwak, J. Regana, Rohde, T. Eich, A. Alkseev, R. Lawless, C. G. Elsmore, Fusco, S. Hacquin, S. A. Silburn, A. Fernades, Luigi Fortuna, P. Bunting, R. Sartori, Yuji Hatano, D. Borodin, L. Colas, Daniele Marocco, M. Lennholm, Carlo Sozzi, J. J. Rasmussen, P. McCullen, Tommy Ahlgren, A. Kirschner, Thomas Johnson, M. Rack, Göran Ericsson, Hans Nordman, Jakub Bielecki, P. Merriman, M. Cavedon, G. Hermon, Geert Verdoolaege, K. J. Gibson, Daisuke Nishijima, R. Clarkson, Fuchs, M. Tomes, R. Zagórski, Gerald Pintsuk, W. Higginson, Daniel F. Valcarcel, R. Mooney, K. Dawson, A. Tallargio, T.H. Osborne, P. J. Carvalho, M. Gethins, R. Dux, Pierre Dumortier, G. Urbanczyk, Inessa Bolshakova, R. King, B. Tal, Daniel Tegnered, J. W. Coenen, Leena Aho-Mantila, Eva Belonohy, S. Schmuck, Kai Nordlund, Grégoire Hornung, G. Tvalashvili, M. De Bock, Y. Baranov, G. De Tommasi, A. Urban, L. Forsythe, I. Zychor, J. Dobrashian, E. Clark, Paolo Arena, Alessia Santucci, Ivan Lupelli, S. Nowak, M. Curuia, Jonathan Graves, J. C. Hillesheim, Claudio Verona, Zoita, S. Moon, C. Castaldo, A.V. Stephen, Karl Schmid, A. Sahlberg, C. Di Troia, R. Woodley, L. Garzotti, D. Sandiford, Matthew M. Knight, Juho Leppänen, S. Emery, O. G. Pompilian, M. Goniche, C. Luna, M. Mayer, M. Baruzzo, A. Weckmann, M. Kempenaars, S. Hazel, Fabio Pisano, Claudia Corradino, A. G. Meigs, P. Leichauer, S. Potzel, Stéphane Devaux, C. Piron, G. Saibene, David A Rasmussen, Bruce Lipschultz, A. Di Siena, E. Lazzaro, J. Deane, C. Meadowcroft, C. J. Rapson, K.-D. Zastrow, Ph. Duckworth, Tom Wauters, F. Nabais, T. Goerler, D. Brunetti, R. Ellis, David Moulton, L. Jones, E. Delabie, Anna Salmi, Luciano Bertalot, G. Burroughes, B. Kos, Laurent Marot, Daniel Primetzhofer, I Miron, N. Lam, F. Napoli, S. Rowe, E. Pajuste, Choong-Seock Chang, R.P. Doerner, D. Silvagni, C. Guillemaut, S. Warder, A.J. Thornton, Matthew Carr, A. Dempsey, Jorge Morales, Pramit Dutta, J. L. Herfindal, S. Maruyama, P. Camp, X. Lefebvre, Ye. O. Kazakov, Andrea G. Chiariello, Gabriele Manduchi, Andre Neto, T. Powell, J. Griffiths, José Vicente, C. Barcellona, J. Hobirk, F. Clairet, L. Xiang, Dirk Reiser, H. Bergsåker, I. Duran, G. Giacometti, M. Kalsey, David Tskhakaya, A. Martin de Aguilera, T. Dittmar, Edmund Highcock, I. Uytdenhouwen, S. Soare, Giuseppe Prestopino, L. Chôné, W. Davis, G. De Temmerman, Basiuk, G. Learoyd, C. Guerard, A. Klix, M. Incelli, B. Viola, R. J. Robins, A. Burckhart, W. Leysen, Jochen Linke, M. Oberparleiter, A. Murari, M. Sertoli, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, G. T. A. Huijsmans, Hajime Urano, Justine M. Kent, A. Kallenbach, D. Fagan, D. S. Darrow, Benedikt Geiger, A. Wynn, X. Sáez, B. Beckett, Horacio Fernandes, G. Ferro, B. Alper, George Wilkie, A. Uccello, T.C. Luce, S. Zoletnik, Petrzilka, Fulvio Auriemma, D. Guard, A. Ho, R. Henriques, I. T. Chapman, D. Butcher, Ph. Maquet, C. Crapper, S. Murphy, C. Ham, D. Brennan, S. Knott, Krasilnikov, D. Kogut, Cédric Pardanaud, K. Galazka, Nicolò Marconato, Daniele Bonfiglio, M. Sos, E. Militello-Asp, Nesenevich, Sean Conroy, S. Hall, L. F. Ruchko, L. Laguardia, O. Marchuk, F.P. Orsitto, I. S. Nedzelskiy, Eva Macusova, E. Andersson Sundén, C. Ayres, R. Prakash, C. Giroud, M. Parsons, R. Rodionov, M. Marin, A. P. Vadgama, A. Reed, Jacob Eriksson, P. Macheta, R. Neu, J. Orszagh, L. Gil, Riccardo Maggiora, M. Peterka, P. Devynck, M. Price, J. Likonen, Andrew M. Edwards, P. Dalgliesh, I. Vinyar, Andrea Malizia, A. Brett, Jane Johnston, A. Kappatou, P. Blatchford, B. Lloyd, P. Vincenzi, A. Mauriya, A. Garcia-Carrasco, Z. Stancar, D. B. Gin, Gediminas Stankunas, J. Edwards, Giuseppe Ambrosino, A. Goodyear, M. Lungaroni, M. Gardener, R.A. Pitts, Svetlana V. Ratynskaia, E. Ivings, Marek Rubel, L. Calacci, Ivo S. Carvalho, M. Afzal, M. Gherendi, D. Schworer, C. Watts, A. M. Messiaen, E. Safi, P. David, A. Petre, J. Uljanovs, U. von Toussaint, H. Greuner, D. Del Sarto, A.C.A. Figueiredo, D. Gallart, R. Bilato, M. Enachescu, P. Monaghan, M. S. J. Rainford, A. Boboc, M. Reinhart, Hiroyasu Utoh, B. P. Duval, L. Hackett, M. Halitovs, G. De Dominici, B. Lomanowski, P. Cahyna, Aslanyan, T. May-Smith, M. Richiusa, A. Goussarov, M. Okabayashi, R. Howell, T. Tadic, M. E. Manso, J. F. Rivero-Rodriguez, Wayne Arter, Ivan Calvo, U. Losada, H. Weisen, A. Teplukhina, Marica Rebai, R. Andrews, C. H. A. Hogben, M. Klas, A. E. Shevelev, J. McKehon, F. Reimold, Enrico Zilli, R. Maingi, M.F. Stamp, A. Rakha, H. T. Kim, D. Ciric, Eric Nardon, A. Somers, I. Igaune, E. Laszynska, S. Saarelma, A. Cullen, Mǎdǎlina Vlad, D. Nodwell, S. Griph, T. Donne, T. Boyce, M. Tyshchenko, Paulo Carvalho, Elena Bruno, Ion E. Stamatelatos, A. Patel, E. de la Luna, F. Causa, Robin Barnsley, Michael Lehnen, F. Belli, N. Jones, B. Bauvir, M. Tokitani, I. Turner, Y. Zhou, J. Simpson, A. Vitins, D. Rendell, Alberto Milocco, Benjamin P. Brown, F.G. Rimini, C. Lamb, V. Thompson, E. Alessi, S. Arshad, J. Rzadkiewicz, P. Prior, J. Moran, S. D. A. Reyes Cortes, Igor Bykov, M. Weiszflog, Annette M. Hynes, Gennady Sergienko, J. Lönnroth, T. C. Hender, M.-L. Mayoral, Mattia Frasca, R. Coelho, J-J Honore, A. Jackson, A. Sirinelli, M. D. Axton, Hyun-Tae Kim, F. P. Keenan, H. J. Boyer, Elisabeth Rachlew, T. Szabolics, J. Ongena, Braic, Sandra C. Chapman, Anders Nielsen, John E. Marsh, J. Jansons, S. Gloeggler, Nengchao Wang, Naulin, M. Porton, D. Falie, P. Welch, G. T. Jones, N. Fil, M. Vincent, U. Kruezi, R. Pereira, L. Horvath, M. F. F. Nave, Lorella Carraro, N. Fonnesu, Davide Flammini, P. V. Edappala, G. M. D. Hogeweij, K. Krieger, P. Card, G. Poulipoulis, W. Studholme, Didier Mazon, T. Odupitan, D. Young, F. J. Casson, N. Muthusonai, I. Jepu, Olivier Sauter, Dimitri Voltolina, Sara Carcangiu, C. Reux, Irena Ivanova-Stanik, D. Tskhakaya Jun, O. Bogar, E. Viezzer, Shane Cooper, Fabio Villone, Florin Spineanu, H. Doerk, E. Cecil, J. Goff, F. Nespoli, F. Schluck, G. Ciraolo, Jennifer M. Lehmann, Jan Mlynar, H. J. C. Oliver, M. Marinucci, N. Krawczyk, J. Buch, M. Dreval, G. Possnert, C. Angioni, C. P. Lungu, Marco Ariola, S. Breton, Christopher N. Bowman, A. Kundu, J. Mailloux, I. Stepanov, D. Sprada, J. Zacks, G. Ramogida, E. Wolfrum, N.W. Eidietis, A. Pires dos Reis, Barbara Cannas, Robert E. Grove, A. Huber, Giuliana Sias, A. Baron Wiechec, Markus Airila, M. Berry, P. Huynh, R. Kovaldins, R. Bastow, Darren Price, S. Abduallev, P. Tsavalas, N. Aiba, Plyusnin, Ion Tiseanu, James Williams, M. Beckers, M. Weiland, S.N. Gerasimov, Alessandra Fanni, L. D. Horton, T. Xu, L. Joita, N. Reid, D. Zarzoso Fernandez, D. I. Refy, Jerry Hughes, Clarisse Bourdelle, J. E. Boom, G. Hancu, K. M. Aggarwal, F. Crisanti, M. Poradziński, A. Loarte, P. Vallejos Olivares, T. Mrowetz, Teddy Craciunescu, R. Guirlet, M. Valentinuzzi, J. Stephens, J. Stober, Michael Barnes, Isabel L. Nunes, Mario Pillon, P. Batistoni, G. Verona Rinati, Fabio Moro, R. Lucock, R. Olney, Jari Varje, B. Butler, A. Mariani, M. Hamed, Skvara, C. Terry, Larisa Baumane, T. Alarcon, Mike Kotschenreuther, T. M. Biewer, O. Hemming, N. Marcenko, Z. Kollo, B. Slade, J. Garcia, T. R. Blackman, Simone Peruzzo, N. den Harder, S. Ng, P. Siren, K. G. McClements, Rita Lorenzini, Y. Yakovenko, Lorenzo Frassinetti, J. Hawes, A. Kirk, C. Noble, Nicola Bonanomi, Y. Martynova, A.E. Shumack, F. Di Maio, H. R. Koslowski, N. Pomaro, G. Nemtsev, M. I. K. Santala, Richard George, E. Giovannozzi, T. Giegerich, C. Woodley, G. Pucella, D. Hopley, P.J. Knight, Michela Gelfusa, Francesca Poli, G. Petravich, G. Kocsis, S. Lanthaler, J. A. Wilson, D. Coombs, F. Köchl, G. Stables, Silvia Spagnolo, D. Rigamonti, W. Van Renterghem, Mike Dunne, H. Betar, W. Pires de Sa, Stjepko Fazinić, M. Nocente, G. Birkenmeier, L. Avotina, A. Horton, P. Heesterman, Larry R. Baylor, C. Stavrou, L. Appel, Amosov, J. Fessey, J. Flanagan, C. Paz Soldan, G. Kaveney, R. Young, Shimpei Futatani, U. Samm, R. Naish, P. Strand, E. Lascas Neto, S. Wheeler, Daisuke Shiraki, S. P. Hotchin, D. M. Witts, A. Cobalt, C. Waldon, Davide Galassi, I. Jenkins, S. Panja, C. Gurl, A. Lukin, R. Albanese, Andrea Pavone, A. Davies, J. Hawkins, N. Vianello, C. Besiliu, F. Domptail, Bruno Santos, Y. Li, T. Kaltiaisenaho, O. N. Kent, X. Litaudon, B. Lescinskis, M. Faitsch, Otto Asunta, F. Eriksson, Pericoli, M. Beldishevski, G.A. Rattá, C. D. Challis, Z. Ghani, M. Juvonen, A. C. C. Sips, João M. C. Sousa, Boris Breizman, P. Finburg, Henrik Sjöstrand, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, R. O. Dendy, B. Lepiavko, D. Croft, Goloborod'ko, A. V. Krasilnikov, M. Wischmeier, K. Gal, R. Ragona, Petter Ström, N. Parsons, G. Calabrò, Jean-Stéphane Joly, A. Capat, Linwei Li, T. Nakano, Paulo Rodrigues, L. Moser, João P. S. Bizarro, L. Piron, K. Pepperell, P. Aleynikov, Ambrogio Fasoli, S.-P. Pehkonen, Giuseppe Gorini, C. Taliercio, M. E. Puiatti, J. Svensson, H. R. Wilson, John Wright, S. Wiesen, O. Asztalos, R.V. Budny, A. Withycombe, P. Piovesan, Jonathan Gaspar, B. D. Stevens, P. Trimble, Vinodh Bandaru, F. S. Zaitsev, H. Sheikh, G. F. Matthews, Daniele Carnevale, K. Schoepf, L. McNamee, A. Czarnecka, P. Blanchard, Erik Fransson, J.P. Coad, Daniel Dunai, Carolina Björkas, A. Manzanares, M. Reich, A. Lahtinen, L. Giacomelli, Mirko Salewski, E. de la Cal, T. D. V. Haupt, T.T.C. Jones, M. Anghel, Kyriakos Hizanidis, J. M. Fontdecaba, Huber, A. Shaw, A. Cufar, A. Muraro, M. Clark, A. Meakins, Roland Sabot, A. Owen, K. Valerii, A. L. Esquisabel, Petr Vondracek, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, D. Terranova, M. Skiba, Konstantina Mergia, Frank Leipold, Francisco L. Tabarés, M. Zerbini, Ken W Bell, Marco Marinelli, Marco Riva, R. Martone, Bobkov, B. Magesh, A. Ash, Parail, M. Hook, Amanda Hubbard, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, Nick Walkden, R. Otin, P. Santa, P. Abreu, Demerdzhiev, Roberto Zanino, T. Spelzini, António J.N. Batista, P. G. Smith, L. Meneses, S. S. Medley, M. J. Mantsinen, K. Vasava, G. Gervasini, Surya K. Pathak, Kristel Crombé, G. Ellwood, P. Raj, Robert Hager, Ch. Linsmeier, C. Stokes, Petra Bilkova, M. Groth, G. Pautasso, C. R. Nobs, S. Sridhar, P. Chmielewski, David Hatch, Luca Boncagni, I. Balboa, C. Stan-Sion, Nobuyuki Asakura, R. McKean, L. Pigatto, João Figueiredo, Roberto Cavazzana, Juri Romazanov, M. Beurskens, C. Christopher Klepper, Maryna Chernyshova, O. Biletskyi, D. Karkinsky, A. Eksaeva, S. Dalley, Pasquale Gaudio, J. Benayas, J. Dankowski, S. Korolczuk, R. Buckingham, F. Parra Diaz, E. Wang, A. Cardinali, J. Naish, R. O. Pavlichenko, Kalle Heinola, Hiroshi Tojo, Miles M. Turner, Brett Chapman, A. Lyssoivan, F. Militello, E. Matveeva, T. Kobuchi, I. Ksiazek, P. Bohm, Cody Jones, W. Yanling, T. Jackson, P. Gohil, D. Alegre, Tim D. Bohm, F. Jaulmes, L. Zakharov, Peter J. Pool, C.G. Lowry, M. Passeri, D. Testa, Igor Lengar, A. Formisano, C. M. Roach, A. Hjalmarsson, A. Drenik, S. Meiter, William Tang, Carlos B. da Silva, Diogo R. Ferreira, P. J. Lomas, M. McHardy, Gunta Kizane, Angela Busse, S. Jachmich, Corneliu Porosnicu, Stanislas Pamela, Yavorskij, Eduardo Alves, Saskia Mordijck, Boniface Nkonga, J. Morris, Dean A. J. Whittaker, S. Ertmer, A. Hollingsworth, T. Barnard, R. Tatali, S. Reynolds, S. Mistry, Sergio Galeani, Torbjörn Hellsten, V.S. Neverov, David Dickinson, T. M. Huddleston, D. Baiao, F. Salzedas, D. Willoughby, M. Tripsky, Emmanuele Peluso, J. R. Harrison, C. Mazzotta, R. Zarins, M. Maslov, X. Bonnin, T. E. Gebhart, S. Fietz, K. Flinders, C. Hidalgo, Yann Corre, Aqsa Shabbir, A. B. Kukushkin, A. Shepherd, M.L. Walker, R. Clay, T. Vasilopoulou, Paolo Innocente, I. H. Coffey, P. Lalousis, Italo Predebon, R. Bravanec, P. Papp, D. Sytnykov, Ewa Pawelec, M. Bernert, G. Corrigan, Lutsenko, M. Romanelli, Gergely Papp, S. Romanelli, R. Salmon, J. Risner, M. T. Ogawa, A. M. Whitehead, E. Fable, H. Dabirikhah, Juan Manuel López, M. Turnyanskiy, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, J.-M. Noterdaeme, N. Hamilton, S. Minucci, I Wilson, A. Muir, A. V. Chankin, C. Clements, Matthias Hoelzl, Francesco Romanelli, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, S. Menmuir, K. Cave-Ayland, P. Curson, Richard Fridström, D. Grist, S. A. Robinson, Rodney Walker, Michael Loughlin, S. Aleiferis, W. Broeckx, Clayton E. Myers, S. F. Smith, D. Harting, W. Zwingmann, F. Binda, Mark R. Gilbert, Rajnikant Makwana, Richard Goulding, D. Van Eester, I. Voitsekhovitch, M. Bowden, I. Kodeli, Tomasz Czarski, Peter Hawkins, S. S. Henderson, M. Koeppen, D. Ricci, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, E. R. Solano, M. Stephen, P. Staniec, C. Appelbee, M. Newman, Susan Leerink, M. Nicassio, P. P. Pereira Puglia, M. Brombin, Wouter Tierens, C. Perez von Thun, Cédric Boulbe, Ya. I. Kolesnichenko, Taina Kurki-Suonio, S. Hallworth-Cook, R. P. Johnson, B. B. Carvalho, Anna Widdowson, Alessandro Pau, R. Price, B. Gonçalves, D. L. Keeling, Kazantzidis, Michael Fitzgerald, M. Hughes, K. D. Lawson, M. Brix, Raffaele Fresa, Juha Karhunen, S. Esquembri, K. Purahoo, Matthew Reinke, Gerd Meisl, M. Valovic, J. Horacek, D. King, H. Maier, Philipps, Kenji Tanaka, M. Kresina, M. Valisa, L. Omoregie, Gábor Cseh, Seppo Sipilä, Scott W. Mosher, Filippo Sartori, J. Kaniewski, Jan Weiland, Giuseppe Chitarin, Coccorese, A. R. Field, P. Beaumont, Robert Skilton, D. C. Campling, Mitul Abhangi, S. Villari, Roberta Lima Gomes, G. D. Ewart, S. Wray, A. Broslawski, A. Sinha, Roberto Paccagnella, S. Hollis, R. D. Wood, Albert Gutierrez-Milla, E. Jonasson, L.-G. Eriksson, R. Leach, L. W. Packer, M. Vuksic, H. J. Sun, C. Marchetto, Giuseppe Telesca, Dieter Leichtle, S. Cramp, Blaise Faugeras, M. Allinson, Yannis Kominis, R. Normanton, H. J. Leggate, Francesco Ghezzi, T. Schlummer, Tommaso Bolzonella, Jorge Ferreira, M. J. Walsh, C. Day, Philipp Drews, Steven J. Meitner, M. D. J. Bright, Per Petersson, D. L. Hillis, M. Webb, P. Wright, C. F. Maggi, B. Sieglin, A. Farahani, J. Strachan, M. Muraglia, M. Cecconello, F. Durodié, D. Callaghan, J. Waterhouse, R. J. Dumont, Sara Moradi, Patrick J. McCarthy, S. Feng, M. Balden, M. Kaufman, R. Warren, Brian Grierson, Harry M. Meyer, S.C. Bradnam, D. Kinna, A. Krivska, M. Lungu, E. Suchkov, A. Kantor, D. Conka, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, J. Callaghan, L. Barrera Orte, Tomas Markovic, Yu Gao, A. Lunniss, Z. Vizvary, E. Khilkevich, Th. Puetterich, Dmitry Matveev, E. Perelli Cippo, T. Owen, N. Imazawa, A. Silva, H. P. Summers, Norberto Catarino, Roberto Pasqualotto, P. Muscat, K. Keogh, Ricardo Magnus Osorio Galvao, P. Carman, M. Leyland, E. Veshchev, A. de Castro, M. Gruca, D. C. McDonald, L. Moreira, J. W. Banks, Sanjeev Ranjan, N. Sutton, Iris D. Young, Martin Imrisek, W. Zhang, J. K. Blackburn, Moiseenko, A. Parsloe, T. Loarer, D. N. Borba, S.J. Wukitch, D. P. Coster, J. Penzo, Jose Ramon Martin-Solis, P. Mantica, N. Bekris, M. G. O'Mullane, S. E. Dorling, Yunfeng Liang, S. Gulati, Roberto Ambrosino, J. Schweinzer, Cocilovo, D. Douai, M. A. Henderson, T. Suzuki, Gianluca Rubino, A. Peackoc, Yann Camenen, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, E. Tholerus, C. Sommariva, Prajapati, Yannick Marandet, F. Hasenbeck, Faa Federico Felici, M. Buckley, Kenneth Hammond, Daniele Milanesio, Cristian Ruset, Katsumichi Hoshino, D. Frigione, D. Chandra, I. Borodkina, P. Dinca, S. Brezinsek, J. Stallard, H. G. Esser, Matthew Sibbald, S. Knipe, Jorge Estrela da Silva, Kensaku Kamiya, P. A. Coates, J. C. Giacalone, Alfredo Pironti, Carvalho, D. D., Ferreira, D. R., Carvalho, P. J., Imrisek, M., Mlynar, J., Fernandes, H., and Formisano, A.
- Subjects
Computer science ,Feature extraction ,Image processing ,Computerized Tomography (CT) and Computed Radiography (CR) ,Plasma diagnostics - interferometry ,spectroscopy and imaging ,01 natural sciences ,Convolutional neural network ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Compass ,Plasma diagnostics-interferometry, spectroscopy and imaging ,0103 physical sciences ,Computer vision ,Instrumentation ,Mathematical Physics ,Jet (fluid) ,Contextual image classification ,010308 nuclear & particles physics ,business.industry ,Cognitive neuroscience of visual object recognition ,Plasma diagnostics - interferometry spectroscopy and imaging ,Tomography ,Artificial intelligence ,business ,plasma diagnostics - interferometry, spectroscopy and imaging - Abstract
Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so- called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.