10 results on '"Isseini, Moussa"'
Search Results
2. U-Pb-Hf isotopic systematics of zircons from granites and metasediments of southern Ouaddaï (Chad), implications for crustal evolution and provenance in the Central Africa Orogenic Belt
- Author
-
Djerossem, Felix, Zeh, Armin, Isseini, Moussa, Vanderhaeghe, Olivier, Berger, Julien, and Ganne, Jérôme
- Published
- 2021
- Full Text
- View/download PDF
3. Mapping hydrothermal alteration mineral deposits from Landsat 8 satellite data in Pala, Mayo Kebbi Region, Southwestern Chad
- Author
-
Osinowo, Olawale Olakunle, Gomy, Ahmed, and Isseini, Moussa
- Published
- 2021
- Full Text
- View/download PDF
4. Neoproterozoic magmatic evolution of the southern Ouaddaï Massif (Chad)
- Author
-
Djerossem Félix, Berger Julien, Vanderhaeghe Olivier, Isseini Moussa, Ganne Jérôme, and Zeh Armin
- Subjects
central africa orogenic belt ,pan-african ,saharan metacraton ,peraluminous granites ,shoshonitic magmatism ,Geology ,QE1-996.5 - Abstract
This paper presents new petrological, geochemical, isotopic (Nd) and geochronological data on magmatic rocks from the poorly known southern Ouaddaï massif, located at the southern edge of the so-called Saharan metacraton. This area is made of greenschist to amphibolite facies metasediments intruded by large pre- to syn-tectonic batholiths of leucogranites and an association of monzonite, granodiorite and biotite granite forming a late tectonic high-K calc-alkaline suite. U-Pb zircon dating yields ages of 635 ± 3 Ma and 613 ± 8 Ma on a peraluminous biotite-leucogranite (containing numerous inherited Archean and Paleoproterozoic zircon cores) and a muscovite-leucogranite, respectively. Geochemical fingerprints are very similar to some evolved Himalayan leucogranites suggesting their parental magmas were formed after muscovite and biotite dehydration melting of metasedimentary rocks. A biotite-granite sample belonging to the late tectonic high-K to shoshonitic suite contains zircon rims that yield an age of 540 ± 5 Ma with concordant inherited cores crystallized around 1050 Ma. Given the high-Mg# (59) andesitic composition of the intermediate pyroxene-monzonite, the very similar trace-element signature between the different rock types and the unradiogenic isotopic signature for Nd, the late-kinematic high-K to shoshonitic rocks formed after melting of the enriched mantle and further differentiation in the crust. These data indicate that the southern Ouaddaï was part of the Pan-African belt. It is proposed that it represents a continental back-arc basin characterized by a high-geothermal gradient during Early Ediacaran leading to anatexis of middle to lower crustal levels. After tectonic inversion during the main Pan-African phase, late kinematic high-K to shoshonitic plutons emplaced during the final post-collisional stage.
- Published
- 2020
- Full Text
- View/download PDF
5. A-type granites from the Pan-African orogenic belt in south-western Chad constrained using geochemistry, Sr–Nd isotopes and U–Pb geochronology
- Author
-
Isseini, Moussa, André-Mayer, Anne-Sylvie, Vanderhaeghe, Olivier, Barbey, Pierre, and Deloule, Etienne
- Published
- 2012
- Full Text
- View/download PDF
6. Spatio-temporal analysis of surface displacements in N’Djamena, Chad derived by Persistent Scatter-Interferometric Synthetic Aperture Radar (PS-InSAR) and Small BAseline Subset (SBAS) techniques
- Author
-
Rygus, Michelle, primary, Tessari, Giulia, additional, Holecz, Francesco, additional, Vogt, Marie-Louise, additional, Daïra, Djoret, additional, Destro, Elisa, additional, Isseini, Moussa, additional, Origgi, Giaime, additional, Ndjoh Messina, Calvin, additional, and Meisina, Claudia, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin.
- Author
-
Gómez-Escalonilla, Víctor, Vogt, Marie-Louise, Destro, Elisa, Isseini, Moussa, Origgi, Giaime, Djoret, Daira, Martínez-Santos, Pedro, and Holecz, Francesco
- Subjects
WATERSHEDS ,GROUNDWATER ,GEOGRAPHIC information systems ,REMOTE-sensing images ,CLASSIFICATION algorithms - Abstract
This paper presents a machine learning method to map groundwater potential in crystalline domains. First, a spatially-distributed set of explanatory variables for groundwater occurrence is compiled into a geographic information system. Twenty machine learning classifiers are subsequently trained on a sample of 488 boreholes and excavated wells for a region of eastern Chad. This process includes collinearity, cross-validation, feature elimination and parameter fitting routines. Random forest and extra trees classifiers outperformed other algorithms (test score > 0.80, balanced score > 0.80, AUC > 0.87). Fracture density, slope, SAR coherence (interferometric correlation), topographic wetness index, basement depth, distance to channels and slope aspect proved the most relevant explanatory variables. Three major conclusions stem from this work: (1) using a large number of supervised classification algorithms is advisable in groundwater potential studies; (2) the choice of performance metrics constrains the relevance of explanatory variables; and (3) seasonal variations from satellite images contribute to successful groundwater potential mapping. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
8. Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin
- Author
-
Gómez-Escalonilla, Víctor, primary, Vogt, Marie-Louise, additional, Destro, Elisa, additional, Isseini, Moussa, additional, Origgi, Giaime, additional, Djoret, Daira, additional, Martínez-Santos, Pedro, additional, and Holecz, Francesco, additional
- Published
- 2021
- Full Text
- View/download PDF
9. Uranium mineralization associated with late magmatic ductile to brittle deformation and Na–Ca metasomatism of the Pan-African A-type Zabili syntectonic pluton (Mayo-Kebbi massif, SW Chad)
- Author
-
Ohnenstetter Maryse, Anne-Sylvie André-Mayer, Eglinger Aurélien, Van Lichtervelde Marieke, Vanderhaeghe Olivier, Isseini Moussa, Mbaguedje Diondoh, Poujol Marc, Cuney Michel, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire Polytechnique de Mongo, Géosciences Rennes (GR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS), NEEDS, CNRS, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), and Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
geography ,geography.geographical_feature_category ,Fractional crystallization (geology) ,010504 meteorology & atmospheric sciences ,Pluton ,Partial melting ,Geochemistry ,[SDU.STU.PE]Sciences of the Universe [physics]/Earth Sciences/Petrography ,Epidote ,Massif ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Geophysics ,Geochemistry and Petrology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Monazite ,engineering ,Economic Geology ,Metasomatism ,Geology ,0105 earth and related environmental sciences ,Zircon - Abstract
International audience; The Mayo-Kebbi massif (Chad) exposes a Neoproterozoic juvenile crustal segment that has been tectonically accreted in the Central African Orogenic Belt and reworked during the Pan-African orogeny. It comprises a syntectonic high-K magmatic suite including the Zabili A-type granitic pluton. The Zabili pluton is made of a highly differentiated granite generated by fractional crystallization of a magma formed by partial melting of a Neoproterozoic juvenile protolith. Syn- to post-magmatic ductile to brittle deformation of the Zabili pluton is associated with metasomatism and deposition of uranium. Primary magmatic U-bearing minerals are zircon, monazite, and uranothorite. Late-magmatic deformation and Na-metasomatism are marked by the development of R’ antithetic shear zones with high-temperature dynamic recrystallization of K-feldspar and Ca-plagioclase phenocrysts coeval with crystallization of albite along deformation bands and grain boundaries, and crystallization of interstitial amphibole, calcite epidote and albite also affected by intracrystalline deformation. At this stage, U-bearing minerals are monazite, uraninite, brannerite (pseudomorphosed in ekanite). This late-magmatic event is dated by U–Th–Pb on monazite at 599 ± 4 Ma. Brittle deformation and Ca-metasomatism are marked by cataclastic zones and veins containing albite, epidote, calcite, chlorite, apatite, metamict zircon, pitchblende, U-silicates, and iron oxides. U-bearing minerals are altered and/or remobilized in ekanite, kasolite, and uranophane. These data suggest that the uranium mineralization hosted by the Zabili pluton records a superposition of processes and traces extreme crustal differentiation of a Neoproterozoic juvenile crustal segment reworked during the Pan-African orogeny.
- Published
- 2021
10. Neoproterozoic crustal growth and differentiation : Example of the Mayo Kebbi massif in southwestern Chad
- Author
-
Isseini, Moussa, Géologie et gestion des ressources minérales et énergétiques (G2R), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Centre National de la Recherche Scientifique (CNRS), Université Henri Poincaré - Nancy 1, Olivier Vanderhaege, Anne-Sylvie André-Mayer, and UL, Thèses
- Subjects
Crustal differentiation ,Crustal growth ,Ceinture orogénique pan-africaine ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Croissance crustale ,Stratigraphie séquentielle ,Géodynamique-Protérozoïque ,Mayo Kebbi ,Différenciation crustale ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,Cratons -- Afrique ,Pan-African orogenic belt ,Néoprotérozoïque ,Géodynamique-Mayo-Kebbi (Tchad) ,Neoproterozoic - Abstract
The Mayo Kebbi massif (south-western Chad) is located between the Congo craton, the West African craton and the Saharan Metacraton. It consists of two greenstone belts (Zalbi and Goueygoudoum), three magmatic complexes (Gauthiot falls, Lere, Figuil) and post-tectonic intrusions distinguished on the basis of their structural, petrological, geochemical and geochronological characteristics. The geodynamic evolution of this massif includes the following phases:Phase 1: Emplacement of a Mafic to Intermediate Plutonic (MIP) complex. Boloro metadiorite, which belongs to this complex, is dated at 748 ± 4 Ma (U-Pb zircon age). This metadiorite is enriched in REE and characterized by LaN/YbN ~ 12, Sr/Y > 32, high LILE, Cr and Ni contents but negative anomalies in Nb-Ta. These features are attributed to partial melting of the slab followed by interaction of the produced magmas with the mantle wedge during their ascent.Phase 2: Emplacement of metagabbros and metabasalts (700 ± 10 Ma: U-Pb zircon age) of the Zalbi metavolcanic-sedimentary group. These rocks are characterized by a decoupling of LILE and HFSE, negative Nb-Ta anomalies, weak to moderate LREE fractionation relative to HREE. In particular, their geochemical characteristics are similar to modern back-arc basins. The isotopic compositions of Sr and Nd of these rocks preclude contamination by old continental crust of the related magmas during their emplacement. Accordingly, the MIP complex and the Zalbi metavolcanic-sedimentary group are associated to juvenile accretion in an island arc/back-arc basin tectonic setting.Phase 3: The syntectonic quartz metadiorite of Gauthiot Falls magmatic complex (665 ± 1 Ma: U-Pb zircon age, Penaye et al., 2006) is emplaced during a first collision event, which involves the Mayo Kebbi massif and the Adamaoua-Yade domain to the east. This event marks the beginning of the closure of the Zalbi back-arc basin and crustal thickening.Phase 4: The thickening is responsible of intra-crustal differentiation by partial melting of rocks accreted during the previous phases at the base of the arc. During this phase, several tonalitic intrusions are emplaced, including hornblende-biotite tonalites of Gauthiot Falls and Guegou tonalite (Lere magmatic complex). The latter is dated at 647 ± 5 Ma (U-Pb zircon age). The produced magmas have typical features of TTG magmas, leaving a garnet bearing residue at the base of the continental crust.Phase 5: The syntectonic tonalite of Figuil magmatic complex dated at 618 ± 6 Ma (U-Pb zircon age), is characterized by initial ?Nd = -3 and initial 87Sr/86Sr = 0.7073 attesting for the involvement of pre-Neoproterozoic crust on its origin. It marks a second collision event between the Mayo Kebbi massif and the Western domain of the Central African Orogenic Belt to the west.Phase 6: The Zabili A-type granite emplaced at 567 ± 10 Ma (U-Pb zircon age) and is related to the last magmatic events of the Pan-African orogenic cycle (post-tectonic intrusions). The geochemical (low Sr, Eu, Ca, Mg, Ni) and isotopic compositions (initial ?Nd = +3 à +7) of this granite point to an origin involving extreme fractionation of mantle-derived magmas which interacted with an old crustal component during their emplacement in the upper continental crust, Le massif du Mayo Kebbi au sud-ouest du Tchad est localisé entre le craton du Congo au Sud, le craton Ouest Africain à l'Ouest et le Métacraton du Sahara à l'Est. Formé au cours de l'orogenèse panafricaine, entre 800 et 570 Ma, il est constitué de deux ceintures de roches vertes (Zalbi et Goueygoudoum), trois complexes magmatiques (Chutes Gauthiot, Léré et Figuil) et des intrusions post-tectoniques distingués sur la base de leurs caractères structuraux, pétrologiques, géochimiques et géochronologiques. L'évolution géodynamique de ce massif comprend les phases suivantes:Phase 1: Mise en place d'un complexe mafique et intermédiaire (CMI) dont la métadiorite de Boloro datée à 748 ± 4 Ma (U-Pb sur zircon). Cette métadiorite, riche en terres rares, se caractérise par LaN/YbN ~ 12, Sr/Y > 32, teneurs en LILE, Cr, Ni élevées et des anomalies négatives en Nb-Ta. Ces caractéristiques sont attribuées à la fusion partielle de la plaque océanique plongeante et interaction des magmas produits avec le coin mantellique au cours de leur ascension.Phase 2: Mise en place des métagabbros et métabasaltes (700 ± 10 Ma: U-Pb sur zircon) de la série métavolcano-sédimentaire de Zalbi. Ces roches sont caractérisées par un découplage LILE/HFSE, des anomalies négatives en Nb-Ta et des rapports LaN/YbN indiquant un fractionnement faible à modéré des terres rares. En particulier, leurs caractères géochimiques sont similaires à ceux des bassins arrière-arcs modernes. La signature isotopique en Sr et Nd de ces roches exclut toute contamination par une croûte continentale ancienne au moment de leur mise en place. CMI et série métavolcano-sédimentaires, regroupés dans le cadre des ceintures de roches vertes, représentent ainsi une accrétion juvénile en contextes d'arc insulaire/bassin arrière-arc.Phase 3: La métadiorite quartzique syntectonique du complexe magmatique des chutes Gauthiot (665 ± 1 Ma: âge U-Pb sur zircon, Penaye et al., 2006) correspond à la mise en place de magmas contemporains d'une première collision, qui implique le massif du Mayo Kebbi et le bloc rigide de l'Adamaoua-Yadé à l'Est. Cet évènement marque le début de la fermeture du bassin arrière-arc de Zalbi et d'un épaississement crustal.Phase 4 : L'épaississement est responsable de la différentiation intracrustale par fusion partielle des roches accrétées au cours des phases précédentes à la base de l'arc. Pendant cette phase se mettent en place des magmas tonalitiques, dont la tonalite à hornblende-biotite de Guegou (complexe magmatique de Léré) datée à 647 ± 5 Ma (U-Pb sur zircon). Les magmas produits ont des caractères de magmas TTG et laissent un résidu à grenat à la base de la croûte continentale.Phase 5: La tonalite syntectonique du complexe magmatique de Figuil, datée à 618 ± 6 Ma (U-Pb sur zircon), se distingue par eNd initial = -3 et 87Sr/86Sr initial = 0,7073. Les signatures isotopiques de cette tonalite démontrent l'implication dans le magmatisme d'une croûte Pré-Néoprotérozoïque. Elle est contemporaine d'une deuxième collision qui fait intervenir le massif du Mayo Kebbi et le domaine Occidental de la Ceinture Orogénique d'Afrique Centrale.Phase 6: La mise en place du granite de type A de Zabili à 567 ± 10 Ma (âge U-Pb sur zircon) est associée aux dernières manifestations magmatiques du cycle orogénique panafricain (intrusions post-tectoniques). Les caractères géochimiques (appauvrissement extrême en Sr, Eu, Ca, Mg, Ni) et isotopiques (eNd initial = +3 à +7) de ce granite indiquent une origine par cristallisation fractionnée à partir de magmas d'origine mantellique et contamination de ceux-ci au cours de leur mise en place dans la croûte supérieure par une composante crustale ancienne
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.