1. Hybrid Emission Modeling of GRB 221009A: Shedding Light on TeV Emission Origins in Long-GRBs
- Author
-
Isravel, Hebzibha, Begue, Damien, and Pe'er, Asaf
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Theory - Abstract
Observations of long duration gamma-ray bursts (GRBs) with TeV emission during their afterglow have been on the rise. Recently, GRB 221009A, the most energetic GRB ever observed, was detected by the {LHAASO} experiment in the energy band 0.2 - 7 TeV. Here, we interpret its afterglow in the context of a hybrid model in which the TeV spectral component is explained by the proton-synchrotron process while the low energy emission from optical to X-ray is due to synchrotron radiation from electrons. We constrained the model parameters using the observed optical, X-ray and TeV data. By comparing the parameters of this burst and of GRB 190114C, we deduce that the VHE emission at energies $\geq$ 1 TeV in the GRB afterglow requires large explosion kinetic energy, $E \gtrsim 10^{54}$~erg and a reasonable circumburst density, $n\gtrsim 10$~cm$^{-3}$. This results in a small injection fractions of particles accelerated to a power-law, $\sim 10^{-2}$. {A significant fraction of shock energy must be allocated to a near equipartition magnetic field, $\epsilon_B \sim 10^{-1}$, while electrons should only carry a small fraction of this energy, $\epsilon_e \sim 10^{-3}$. Under these conditions required for a proton synchrotron model, namely $\epsilon_B \gg \epsilon_e$, the SSC component is substantially sub-dominant over proton-synchrotron as a source of TeV photons.} These results lead us to suggest that proton-synchrotron process is a strong contender for the radiative mechanisms explaining GRB afterglows in the TeV band., Comment: 15 pages and 4 figures (Accepted to be published in ApJ)
- Published
- 2023