82 results on '"Iolanda Ricciardi"'
Search Results
2. Optical Frequency Combs in Quadratically Nonlinear Resonators
- Author
-
Iolanda Ricciardi, Simona Mosca, Maria Parisi, François Leo, Tobias Hansson, Miro Erkintalo, Pasquale Maddaloni, Paolo De Natale, Stefan Wabnitz, and Maurizio De Rosa
- Subjects
optical frequency combs ,quadratic nonlinearity ,second harmonic generation ,optical parametric oscillator ,modulation instability ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
Optical frequency combs are one of the most remarkable inventions in recent decades. Originally conceived as the spectral counterpart of the train of short pulses emitted by mode-locked lasers, frequency combs have also been subsequently generated in continuously pumped microresonators, through third-order parametric processes. Quite recently, direct generation of optical frequency combs has been demonstrated in continuous-wave laser-pumped optical resonators with a second-order nonlinear medium inside. Here, we present a concise introduction to such quadratic combs and the physical mechanism that underlies their formation. We mainly review our recent experimental and theoretical work on formation and dynamics of quadratic frequency combs. We experimentally demonstrated comb generation in two configurations: a cavity for second harmonic generation, where combs are generated both around the pump frequency and its second harmonic and a degenerate optical parametric oscillator, where combs are generated around the pump frequency and its subharmonic. The experiments have been supported by a thorough theoretical analysis, aimed at modelling the dynamics of quadratic combs, both in frequency and time domains, providing useful insights into the physics of this new class of optical frequency comb synthesizers. Quadratic combs establish a new class of efficient frequency comb synthesizers, with unique features, which could enable straightforward access to new spectral regions and stimulate novel applications.
- Published
- 2020
- Full Text
- View/download PDF
3. Theory of quadratic optical frequency combs.
- Author
-
Tobias Hansson, Francois Leo, Miro Erkintalo, Stephane Coen, Iolanda Ricciardi, Maurizio De Rosa, and Stefan Wabnitz
- Published
- 2016
- Full Text
- View/download PDF
4. Optical frequency combs in dispersion-controlled doubly resonant second-harmonic generation
- Author
-
Iolanda Ricciardi, Pasquale Maddaloni, Paolo De Natale, Miro Erkintalo, Tobias Hansson, Ady Arie, Stefan Wabnitz, and Maurizio De Rosa
- Subjects
Atom and Molecular Physics and Optics ,Atom- och molekylfysik och optik ,Atomic and Molecular Physics, and Optics - Abstract
We report on the experimental realization and a systematic study of optical frequency comb generation in doubly resonant intracavity second harmonic generation (SHG). The efficiency of intracavity nonlinear processes usually benefits from the increasing number of resonating fields. Yet, achieving the simultaneous resonance of different fields may be technically complicated, all the more when a phase matching condition must be fulfilled as well. In our cavity we can separately control the resonance condition for the fundamental and its second harmonic, by simultaneously acting on an intracavity dispersive element and on a piezo-mounted cavity mirror, without affecting the quasi-phase matching condition. In addition, by finely adjusting the laser-to-cavity detuning, we are able to observe steady comb emission across the whole resonance profile, revealing the multiplicity of comb structures, and the substantial role of thermal effects on their dynamics. Lastly, we report the results of numerical simulations of comb dynamics, which include photothermal effects, finding a good agreement with the experimental observations. Our system provides a framework for exploring the richness of comb dynamics in doubly resonant SHG systems, assisting the design of chip-scale quadratic comb generators. Funding Agencies|PON Ricerca e Innovazione 2014/2020 FESR/FSC (ARS01_00734, QUANCOM); Agenzia Spaziale Italiana(NIHL); Horizon 2020 Framework Programme (820419, FET Flagship on Quantum Technologies, Qombs Project);Ministero degli Affari Esteri e della Cooperazione Internazional (NOICE Joint Laboratory).
- Published
- 2022
5. Absolute frequency metrology of buffer-gas-cooled molecular spectra at the 10-12 accuracy level
- Author
-
Roberto Aiello, Valentina Di Sarno, Maria Delli Santi, Maurizio De Rosa, Iolanda Ricciardi, Paolo De Natale, Giovanni Giusfredi, Luigi Santamaria Amato, and Pasquale Maddaloni
- Abstract
By reducing both the internal and translational temperature of any species down to a few kelvins, the buffer-gas-cooling (BGC) technique has the potential to dramatically improve the quality of ro-vibrational molecular spectra, thus offering unique opportunities for transition frequency measurements with unprecedented accuracy. However, the difficulty in integrating metrological-grade spectroscopic tools into bulky cryogenic equipment has hitherto prevented from approaching the kHz level even in the best cases. Here, we overcome this drawback by an original opto-mechanical scheme which, effectively coupling a Lamb-dip saturated-absorption cavity ring-down spectrometer to a BGC source, allows us to determine the absolute frequency of the acetylene (ν1+ν3) R(1)e transition at 6561.0941 cm-1 with a fractional uncertainty as low as 6∙10-12. By improving the previous record with buffer-gas-cooled molecules by one order of magnitude, our approach paves the way for a number of ultra-precise low-temperature spectroscopic studies, aimed at both fundamental Physics tests and optimized laser cooling strategies.
- Published
- 2022
- Full Text
- View/download PDF
6. Lamb-dip ro-vibrational spectroscopy of buffer-gas-cooled acetylene
- Author
-
Roberto Aiello, Maria Giulia Delli Santi, Valentina Di Sarno, Maurizio De Rosa, Iolanda Ricciardi, Paolo De Natale, Luigi Santamaria, Giovanni Giusfredi, and Pasquale Maddaloni
- Subjects
History ,Computer Science Applications ,Education - Abstract
We present an original opto-mechanical scheme which, effectively coupling a Lamb-dip saturated-absorption cavity ring-down spectrometer to a buffer-gas-cooling (BGC) source, allows us to determine the absolute frequency of the acetylene (ν 1 + ν 3) R(1)e transition at 6561.0941 cm−1 with an overall (statistical + systematic) uncertainty as low as 1.2 kHz. By improving the previous record with buffer-gas-cooled molecules by one order of magnitude, our achievement opens the door to new kind of ultra-precise low-temperature spectroscopic studies.
- Published
- 2023
- Full Text
- View/download PDF
7. Lamb-dip saturated-absorption cavity ring-down rovibrational molecular spectroscopy in the near-infrared
- Author
-
Roberto Aiello, Valentina Di Sarno, Maria Giulia Delli Santi, Maurizio De Rosa, Iolanda Ricciardi, Giovanni Giusfredi, Paolo De Natale, Luigi Santamaria, and Pasquale Maddaloni
- Subjects
Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Abstract
The high-detection-sensitivity saturated-absorption cavity ring-down (SCAR) technique is extended to Lamb-dip spectroscopy of rovibrational molecular transitions in the near-infrared region. Frequency-comb-referenced sub-Doppler saturation measurements, performed on the acetylene ( ν 1 + ν 3 + ν 4 ← ν 4 ) R(14)e line at 6562 cm − 1 , are analyzed by a SCAR global line profile fitting routine, based on a specially developed theoretical model. Compared to a conventional cavity ring-down evaluation, our approach yields dip profiles with a linewidth freed from saturation broadening effects, reduced by 40%, and a signal-to-noise ratio increased by 90%. Ultimately, an overall (statistical and systematic) fractional uncertainty as low as 7 × 10 − 12 is achieved for the absolute line-center frequency. At the same time, our method is also able to accurately infer the linear (non-saturated) behavior of the gas absorption, providing Lamb-dip-based line strength measurements with a relative uncertainty of 0.5%.
- Published
- 2022
- Full Text
- View/download PDF
8. Infrared Comb Spectroscopy of Buffer-Gas-Cooled Molecules: Toward Absolute Frequency Metrology of Cold Acetylene
- Author
-
Pasquale Maddaloni, L. Santamaria, Roberto Aiello, Paolo De Natale, Valentina Di Sarno, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
buffer-gas-cooling ,Materials science ,Spectrophotometry, Infrared ,Infrared ,Buffer gas ,Review ,01 natural sciences ,Catalysis ,Spectral line ,lcsh:Chemistry ,010309 optics ,Inorganic Chemistry ,buffer gas cooling ,chemistry.chemical_compound ,0103 physical sciences ,Broadband ,Molecule ,Physical and Theoretical Chemistry ,010306 general physics ,Spectroscopy ,lcsh:QH301-705.5 ,Molecular Biology ,Acetylene ,Organic Chemistry ,General Medicine ,Models, Theoretical ,Computer Science Applications ,Metrology ,lcsh:Biology (General) ,lcsh:QD1-999 ,chemistry ,infrared frequency combs ,Atomic physics ,precision spectroscopy ,Algorithms - Abstract
We review the recent developments in precision ro-vibrational spectroscopy of buffer-gas-cooled neutral molecules, obtained using infrared frequency combs either as direct probe sources or as ultra-accurate optical rulers. In particular, we show how coherent broadband spectroscopy of complex molecules especially benefits from drastic simplification of the spectra brought about by cooling of internal temperatures. Moreover, cooling the translational motion allows longer light-molecule interaction times and hence reduced transit-time broadening effects, crucial for high-precision spectroscopy on simple molecules. In this respect, we report on the progress of absolute frequency metrology experiments with buffer-gas-cooled molecules, focusing on the advanced technologies that led to record measurements with acetylene. Finally, we briefly discuss the prospects for further improving the ultimate accuracy of the spectroscopic frequency measurement.
- Published
- 2020
- Full Text
- View/download PDF
9. Quadratic Optical Frequency Combs: Towards a New Platform for Multi-Octave Microcombs
- Author
-
Miro Erkintalo, M. De Rosa, Iolanda Ricciardi, Tobias Hansson, Melchiorre F. Parisi, Simona Mosca, François Leo, Pedro Parra-Rivas, and Stefan Wabnitz
- Subjects
Physics ,Acoustics ,nonlinear optics ,Parametric oscillation ,Physics::Optics ,Second-harmonic generation ,Octave (electronics) ,01 natural sciences ,Power (physics) ,010309 optics ,Nonlinear system ,Quadratic equation ,optical solitons ,Optical frequencies ,optical frequency combs ,0103 physical sciences ,Optical frequency comb ,010306 general physics - Abstract
Optical frequency comb sources based on three-wave-mixing in quadratic nonlinear materials allow for reduced pump power threshold and extended spectral coverage. We review recent progress on quadratic optical frequency combs based on second-harmonic generation and optical parametric oscillation.
- Published
- 2020
- Full Text
- View/download PDF
10. Optical frequency combs in doubly resonant second harmonic generation (Conference Presentation)
- Author
-
François Leo, Simona Mosca, Stefan Wabnitz, Pasquale Maddaloni, Miro Erkintalo, Tobias Hansson, Paolo De Natale, Ady Arie, M. Parisi, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
Physics ,business.industry ,Physics::Optics ,Second-harmonic generation ,Laser pumping ,Laser ,law.invention ,Metrology ,Resonator ,Optics ,law ,Optical cavity ,Femtosecond ,Optical parametric oscillator ,business - Abstract
We report on the experimental realization of optical frequency comb (OFC) generation in a doubly-resonant cavity second harmonic generation (SHG) system. OFCs continue to attract significant interest, offering a wealth of potential applications beyond frequency metrology. Continuously-driven Kerr microresonators, whose nonlinear response is dominated by the third-order nonlinearity, have proven to be viable alternatives to comb sources based on femtosecond mode-locked lasers. Recently, OFCs have also been directly generated through second-order nonlinear interactions in cw-pumped resonators namely, a singly-resonant cavity SHG system and a nearly-degenerate optical parametric oscillator. Theoretical studies have also predicted OFCs in doubly-resonant cavity SHG systems with a much lower threshold with respect to the singly-resonant configurations. Here we report on the first observations of OFCs in such a doubly-resonant system. The experiment is based on a periodically poled lithium niobate crystal, placed in a traveling-wave optical cavity, pumped by a cw Nd:YAG laser emitting 0.5 W at 1064 nm. The cavity is resonant for frequencies around both the fundamental pump and its second harmonic at 532 nm, and an intracavity adjustable silica window is used to separately set the detunings of the pump and its second harmonic. Stable cavity locking to the pump laser is achieved via the Pound-Drever-Hall offset locking technique, thanks to a counterpropagating orthogonally polarized auxiliary beam. We measured a power threshold for comb formation as low as 5 mW, reduced by more than one order of magnitude with respect to singly-resonant configurations. The locking system permitted to explore frequency detunings up to several cavity linewidths, and to correspondingly observe a large variety of comb regimes, with different teeth spacing and spectral span, as well as the contribution of photothermal effect to the whole dynamics. In this regard, we developed an extended theoretical model that includes thermo-optical nonlinearities.
- Published
- 2020
- Full Text
- View/download PDF
11. Optical Frequency Combs in Quadratically Nonlinear Resonators
- Author
-
Paolo De Natale, M. Parisi, Tobias Hansson, François Leo, Simona Mosca, Stefan Wabnitz, Miro Erkintalo, Pasquale Maddaloni, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
lcsh:Mechanical engineering and machinery ,FOS: Physical sciences ,Physics::Optics ,Review ,01 natural sciences ,Optical frequency combs ,law.invention ,010309 optics ,Resonator ,Frequency comb ,Optics ,law ,Nonlinear medium ,optical frequency combs ,optical solitons ,nonlinear optics ,0103 physical sciences ,lcsh:TJ1-1570 ,Physics::Atomic Physics ,Electrical and Electronic Engineering ,010306 general physics ,quadratic nonlinearity ,Modulation instability ,optical parametric oscillator ,Physics ,business.industry ,second harmonic generation ,Mechanical Engineering ,modulation instability ,Second-harmonic generation ,Généralités ,Second harmonic generation ,Laser ,Nonlinear system ,Control and Systems Engineering ,Quadratic nonlinearity ,Optical parametric oscillator ,Harmonic ,business ,Optics (physics.optics) ,Physics - Optics - Abstract
Optical frequency combs are one of the most remarkable inventions in recent decades. Originally conceived as the spectral counterpart of the train of short pulses emitted by mode-locked lasers, frequency combs have also been subsequently generated in continuously pumped microresonators, through third-order parametric processes. Quite recently, direct generation of optical frequency combs has been demonstrated in continuous-wave laser-pumped optical resonators with a second-order nonlinear medium inside. Here, we present a concise introduction to such quadratic combs and the physical mechanism that underlies their formation. We mainly review our recent experimental and theoretical work on formation and dynamics of quadratic frequency combs. We experimentally demonstrated comb generation in two configurations: a cavity for second harmonic generation, where combs are generated both around the pump frequency and its second harmonic and a degenerate optical parametric oscillator, where combs are generated around the pump frequency and its subharmonic. The experiments have been supported by a thorough theoretical analysis, aimed at modelling the dynamics of quadratic combs, both in frequency and time domains, providing useful insights into the physics of this new class of optical frequency comb synthesizers. Quadratic combs establish a new class of efficient frequency comb synthesizers, with unique features, which could enable straightforward access to new spectral regions and stimulate novel applications., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2020
12. Quadratic Optical Frequency Combs
- Author
-
Miro Erkintalo, Pedro Parra-Rivas, François Leo, Tobias Hansson, M. Parisi, Simona Mosca, Stefan Wabnitz, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
Physics ,business.industry ,nonlinear optics ,Parametric oscillation ,Second-harmonic generation ,Physics::Optics ,01 natural sciences ,Optical frequency combs ,Power (physics) ,010309 optics ,Optics ,Quadratic equation ,optical solitons ,Optical frequencies ,optical frequency combs ,0103 physical sciences ,Optical frequency comb ,010306 general physics ,business ,optical parametric oscillation ,second-harmonic generation - Abstract
Optical frequency comb sources based on quadratic nonlinearities provide an interesting alternative to Kerr combs in terms of reduced pump power requirements and extended spectral coverage. We review theory and recent experiments of quadratic optical frequency combs based on second-harmonic generation and optical parametric oscillation.
- Published
- 2019
- Full Text
- View/download PDF
13. Frequency-comb-assisted precision spectroscopy of a buffer-gas-cooled acetylene beam
- Author
-
Pasquale Maddaloni, Valentina Di Sarno, Paolo De Natale, Maurizio De Rosa, Simona Mosca, Iolanda Ricciardi, Luigi Santamaria, Davide Calonico, Filippo Levi, Massimo Inguscio, Filippo Tamassia, Gianfranco Di Lonardo, Pasquale, Maddaloni, Valentina Di Sarno, Paolo De Natale, Maurizio De Rosa, Simona, Mosca, Iolanda, Ricciardi, Luigi, Santamaria, Davide, Calonico, Filippo, Levi, Massimo, Inguscio, Filippo, Tamassia, and Gianfranco Di Lonardo
- Subjects
Frequency comb, Precision spectroscopy, acetylene, molecular beam - Abstract
We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (nu1+nu3) vibrational overtone band of acetylene (12C2H2) around 1.5 micron is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured witha fractional accuracy of 1x10-9. Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, like two-photon excitation, to buffer-gas-cooled molecular beams. In this respect, a frequency-comb-referenced absolute calibration of the 13C12CH2 spectrum around 6497 cm-1 is also reported, preliminary to the implementation of a Doppler-free two-color interrogation scheme.References: L. santamaria, V. Di sarno, P. De Natale, M. De Rosa, M. Inguscio, S. Mosca, I. Ricciardi, D. Calonico, F. Levi, P. Maddaloni, Phys. Chem. Chem. Phys. 18, 16715 (2016).
- Published
- 2017
14. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam
- Author
-
Paolo De Natale, Filippo Levi, Massimo Inguscio, Pasquale Maddaloni, Davide Calonico, Simona Mosca, Valentina Di Sarno, Iolanda Ricciardi, Maurizio De Rosa, and Luigi Santamaria
- Subjects
buffer-gas-cooled molecular beams ,Buffer gas ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Cavity ring-down spectroscopy ,law.invention ,Optics ,law ,acetylene ,0103 physical sciences ,Physical and Theoretical Chemistry ,010306 general physics ,Absorption (electromagnetic radiation) ,Spectroscopy ,business.industry ,Chemistry ,Overtone band ,021001 nanoscience & nanotechnology ,Laser ,cavity ring-down spectroscopy ,Rubidium standard ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam - Abstract
We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the ( v1 + v(3)) vibrational overtone band of acetylene (C2H2) around 1.5 mu m is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of 1 X 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gascooled molecular beams.
- Published
- 2016
- Full Text
- View/download PDF
15. Modulation Instability Induced Frequency Comb Generation in a Continuously Pumped Optical Parametric Oscillator
- Author
-
Tobias Hansson, Melchiorre F. Parisi, Iolanda Ricciardi, M. De Rosa, Pasquale Maddaloni, P. De Natale, Stefan Wabnitz, François Leo, Simona Mosca, and Miro Erkintalo
- Subjects
Physics ,business.industry ,FOS: Physical sciences ,Physics::Optics ,General Physics and Astronomy ,01 natural sciences ,Instability ,Spectral line ,010309 optics ,Frequency comb ,Nonlinear system ,Optics ,Modulation ,optical frequency combs ,optical solitons ,nonlinear optics ,0103 physical sciences ,Optical parametric oscillator ,010306 general physics ,business ,Optics (physics.optics) ,Physics - Optics ,Coherence (physics) ,Parametric statistics - Abstract
Continuously pumped passive nonlinear cavities can be harnessed for the creation of novel optical frequency combs. While most research has focused on third-order "Kerr" nonlinear interactions, recent studies have shown that frequency comb formation can also occur via second-order nonlinear effects. Here, we report on the formation of quadratic combs in optical parametric oscillator (OPO) configurations. Specifically, we demonstrate that optical frequency combs can be generated in the parametric region around half of the pump frequency in a continuously-driven OPO. We also model the OPO dynamics through a single time-domain mean-field equation, identifying previously unknown dynamical regimes, induced by modulation instabilities, which lead to comb formation. Numerical simulation results are in good agreement with experimentally observed spectra. Moreover, the analysis of the coherence properties of the simulated spectra shows the existence of correlated and phase-locked combs. Our results reveal previously unnoticed dynamics of an apparently well assessed optical system, and can lead to a new class of frequency comb sources that may stimulate novel applications by enabling straightforward access to elusive spectral regions, such as the mid-infrared., 19 pages, 6 Figures
- Published
- 2018
- Full Text
- View/download PDF
16. Frequency comb generation in a continuously pumped optical parametric oscillator
- Author
-
P. De Natale, Pasquale Maddaloni, M. De Rosa, Simona Mosca, Iolanda Ricciardi, Miro Erkintalo, François Leo, Tobias Hansson, M. Parisi, and Stefan Wabnitz
- Subjects
Physics ,Nonlinear optics ,business.industry ,Lithium niobate ,Physics::Optics ,Spectral line ,chemistry.chemical_compound ,Frequency comb ,Quadratic equation ,Optics ,chemistry ,Optical frequency comb ,Frequency comb dynamics ,frequency comb dynamics ,lithium niobate ,nonlinear optics ,optical frequency comb ,optical parametric oscillator ,Optical parametric oscillator ,business ,Parametric statistics ,Coherence (physics) - Abstract
We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.
- Published
- 2018
- Full Text
- View/download PDF
17. Directional quasi-phase matching AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs
- Author
-
M. Parisi, Tobias Hansson, Giuseppe Leo, Natália Morais, Simona Mosca, Iolanda Ricciardi, Maurizio De Rosa, and Stefan Wabnitz
- Subjects
Quasi-phase-matching ,Physics ,business.industry ,Photonic integrated circuit ,Physics::Optics ,Second-harmonic generation ,Nonlinear optics ,01 natural sciences ,law.invention ,010309 optics ,Resonator ,Frequency comb ,Optics ,law ,0103 physical sciences ,Optoelectronics ,Photonics ,010306 general physics ,business ,Waveguide - Abstract
Optical frequency combs currently represent enabling components in a wide number of fast-growing research fields, from frequency metrology to precision spectroscopy, from synchronization of telecommunication systems to environmental and biomedical spectrometry. As recently demonstrated, quadratic nonlinear media are a promising platform for optical frequency combs generation, through the onset of an internally pumped optical parametric oscillator in cavity enhanced second-harmonic generation systems. We present here a proposal for quadratic frequency comb generation in AlGaAs waveguide resonators. Based on the crystal symmetry properties of the AlGaAs material, quasi-phase matching can be realized in curved geometries (directional quasi-phase matching), thus ensuring efficient optical frequency conversion. We propose a novel design of AlGaAs waveguide resonators with strongly reduced total losses, compatible with long-path, high-quality resonators. By means of a numerical study, we predict efficient frequency comb generation with threshold powers in the microwatt range, paving the way for the full integration of frequency comb synthesizers in photonic circuits.
- Published
- 2017
- Full Text
- View/download PDF
18. Frequency comb generation in continuously pumped optical parametric oscillator
- Author
-
Stefan Wabnitz, Tobias Hansson, Iolanda Ricciardi, François Leo, Pasquale Maddaloni, Simona Mosca, P. De Natale, Miro Erkintalo, Melchiorre F. Parisi, and M. De Rosa
- Subjects
Physics ,Computer simulation ,Field (physics) ,business.industry ,Degenerate energy levels ,microresonator frequency ,Physics::Optics ,resonators ,Frequency comb ,Optics ,Mean field theory ,Optical frequencies ,Optical parametric oscillator ,solitons ,business ,Parametric statistics - Abstract
We experimentally demonstrate that optical frequency combs can be generated in a cw-pumped, nearly degenerate, doubly resonant optical parametric oscillator (OPO). Moreover, we present a time-domain theoretical model of the OPO and derive a non-instantaneous mean field dynamic equation for the parametric field. Numerical simulations of the mean field equation are in good agreement with the observed comb patterns.
- Published
- 2017
19. AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs
- Author
-
Iolanda Ricciardi, Maurizio De Rosa, M. Parisi, Giuseppe Leo, Natã¡lia Morais, Simona Mosca, Stefan Wabnitz, and Tobias Hansson
- Subjects
statistical and nonlinear physics ,microrings ,Physics::Optics ,Degree of coherence ,01 natural sciences ,Waveguide (optics) ,010309 optics ,Resonator ,Frequency comb ,Optics ,0103 physical sciences ,atomic and molecular physics ,010306 general physics ,Electronic circuit ,Physics ,Statistical and Nonlinear Physics ,Atomic and Molecular Physics, and Optics ,Computer simulation ,second harmonic generation ,business.industry ,Nonlinear optical materials ,optics ,Nonlinear optics devices ,Optoelectronics ,and Optics ,Photonics ,business ,Realization (systems) ,optical frequency combs - Abstract
We propose a flexible design for directional quasi-phase-matching in AlGaAs waveguide resonators implementing the recently demonstrated optical frequency combs in cavity-enhanced second-harmonic generation. We numerically study the onset of internally pumped optical parametric oscillations that trigger the subsequent comb formation. We also perform a coherence analysis of a particular class of numerically simulated optical frequency combs, corresponding to stable temporal cavity field patterns, revealing the high degree of coherence associated with such stable solutions, a key feature for many refined applications of optical frequency combs. Our analysis shows that efficient generation of coherent frequency combs is possible with threshold powers in the microwatt range and path lengths up to several millimeters, thus enabling the practical realization of new on-chip frequency comb synthesizers, fully integrable in more complex photonic circuits.
- Published
- 2017
- Full Text
- View/download PDF
20. Singly resonant second-harmonic-generation frequency combs
- Author
-
Iolanda Ricciardi, M. De Rosa, François Leo, Stefan Wabnitz, Stéphane Coen, Tobias Hansson, and Miro Erkintalo
- Subjects
Physics ,Optical second-harmonic generation ,Bistability ,Second-harmonic generation ,Fundamental frequency ,Optical parametric oscillators & amplifiers ,01 natural sciences ,010309 optics ,Frequency comb ,Nonlinear system ,Resonator ,Modulational instability ,dispersion (waves) ,group velocity dispersion ,harmonic analysis ,Quantum electrodynamics ,0103 physical sciences ,Dispersion (optics) ,010306 general physics - Abstract
We consider frequency comb generation in dispersive singly resonant second-harmonic-generation cavity systems. Using a single temporal mean-field equation for the fundamental field that features a noninstantaneous nonlinear response function, we model the temporal and spectral dynamics and analyze comb generation, continuous wave bistability, and modulational instability. It is found that, owing to the significant temporal walk-off between the fundamental and second-harmonic fields, modulational instability can occur even in the complete absence of group-velocity dispersion. We further consider the relation of our model to a previously proposed modal expansion approach, and present a derivation of a general system of coupled mode equations. We show that the two models provide very similar predictions and become exactly equivalent in the limit that absorption losses and group-velocity dispersion at the fundamental frequency are neglected. Finally, we perform numerical simulations that show examples of the variety of comb states that are possible in phase-matched quadratic resonators, and discuss the dynamics of the comb formation process.
- Published
- 2017
- Full Text
- View/download PDF
21. Control of squeezed light by optomechanical interaction
- Author
-
Simona Mosca, Iolanda Ricciardi, Maurizio De Rosa, Michele Bonaldi, Paolo De Natale, M. Parisi, Antonio Borrielli, and Francesco Marin
- Subjects
Physics ,Optics ,business.industry ,business ,Squeezed coherent state - Published
- 2017
- Full Text
- View/download PDF
22. Lamb-dip spectroscopy of buffer-gas-cooled molecules
- Author
-
L. Santamaria, M. De Rosa, Iolanda Ricciardi, Simona Mosca, Pasquale Maddaloni, P. De Natale, Roberto Aiello, G. Notariale, and V. Di Sarno
- Subjects
Coupling ,Materials science ,Buffer gas ,Laser ,ring-down spectroscopy ,radiocarbon dioxide ,frequency ,resolution ,laser ,band ,NM ,Atomic and Molecular Physics, and Optics ,Fourier transform spectroscopy ,Electronic, Optical and Magnetic Materials ,law.invention ,law ,Optical cavity ,Molecule ,Atomic physics ,Spectroscopy ,Saturation (chemistry) - Abstract
Nowadays, buffer-gas cooling represents an invaluable option to produce cold stable molecules, both in view of secondary cooling/trapping strategies towards the achievement of quantum degeneracy and for fundamental studies of complex molecules. From this follows a demand to establish a pool of specialized, increasingly precise spectroscopic interrogation techniques. Here, we demonstrate a general approach to Lamb-dip ro-vibrational spectroscopy of buffergas-cooled molecules. The saturation intensity of the selected molecular transition is achieved by coupling the probe laser to a high-finesse optical cavity surrounding the cold sample. A cavity ring-down technique is then implemented to perform saturation sub-Doppler measurements as the buffer (He) and molecular gas flux are varied. As an example, the (v(1) + v(3)) R(1) ro-vibrational line in a 20 Kelvin acetylene sample is addressed. By referencing the probe laser to a Rb/GPS dock, the corresponding line-center frequency as well as the self and foreign (i.e., due to the buffer gas) collisional broadening coefficients are absolutely determined. Our approach represents an important step towards the development of a novel method to perform ultra-precise ro-vibrational spectroscopy on an extremely wide range of cold molecules. In this respect, we finally discuss a number of relevant upgrades underway in the experimental setup to considerably improve the ultimate spectroscopic performance. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
- Published
- 2019
- Full Text
- View/download PDF
23. Frequency comb formation in doubly resonant second-harmonic generation
- Author
-
M. De Rosa, François Leo, Stéphane Coen, Miro Erkintalo, Iolanda Ricciardi, Tobias Hansson, and Stefan Wabnitz
- Subjects
Physics ,Work (thermodynamics) ,business.industry ,FOS: Physical sciences ,Second-harmonic generation ,Physics::Optics ,01 natural sciences ,Stability (probability) ,Instability ,Pulse (physics) ,010309 optics ,Frequency comb ,Nonlinear system ,Optics ,cavity resonators ,dynamics ,modulation ,Modulation ,Quantum electrodynamics ,0103 physical sciences ,optical parametric oscillators ,quadratic nonlinear media ,temporal cavity solitons ,pulse-train generation ,modulational instability ,pattern-formation ,solitary waves ,harmonic-generation ,ring cavity ,microresonator ,010306 general physics ,business ,Optics (physics.optics) ,Physics - Optics - Abstract
We theoretically study the generation of optical frequency combs and corresponding pulse trains in doubly resonant intracavity second-harmonic generation (SHG). We find that, despite the large temporal walk-off characteristic of realistic cavity systems, the nonlinear dynamics can be accurately and efficiently modeled using a pair of coupled mean-field equations. Through rigorous stability analysis of the system's steady-state continuous-wave solutions, we demonstrate that walk-off can give rise to an unexplored regime of temporal modulation instability. Numerical simulations performed in this regime reveal rich dynamical behaviors, including the emergence of temporal patterns that correspond to coherent optical frequency combs. We also demonstrate that the two coupled equations that govern the doubly resonant cavity behavior can, under typical conditions, be reduced to a single mean-field equation akin to that describing the dynamics of singly-resonant-cavity SHG [F. Leo et al., Phys. Rev. Lett. 116, 033901 (2016)]. This reduced approach allows us to derive a simple expression for the modulation instability gain, thus permitting us to acquire significant insight into the underlying physics. We anticipate that our work will have a wide impact on the study of frequency combs in emerging doubly resonant cavity SHG platforms, including quadratically nonlinear microresonators.
- Published
- 2016
- Full Text
- View/download PDF
24. Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities
- Author
-
Iolanda Ricciardi, Maurizio De Rosa, Stefan Wabnitz, Stéphane Coen, Jessienta Anthony, Tobias Hansson, Miro Erkintalo, and François Leo
- Subjects
Lithium niobate ,FOS: Physical sciences ,Physics::Optics ,01 natural sciences ,Optical parametric oscillator ,Kerr-frequency combs ,whispering-gallery resonators ,supercontinuum generation ,ring cavity ,instability ,coversion ,emission ,dynamics ,media ,010309 optics ,chemistry.chemical_compound ,Resonator ,Optics ,Atomic and Molecular Physics ,0103 physical sciences ,010306 general physics ,Envelope (waves) ,Physics ,Whispering gallery ,business.industry ,Atomic and Molecular Physics, and Optics ,Statistical and Nonlinear Physics ,Pulse (physics) ,chemistry ,Modulation ,Atomic and molecular physics, and optics ,statistical and nonlinear physics ,control nonlinearities ,Continuous wave ,and Optics ,Whispering-gallery wave ,business ,Optics (physics.optics) ,Physics - Optics - Abstract
We numerically study, by means of the single envelope equation, the generation of optical frequency combs ranging from the visible to the mid-infrared spectral regions in resonators with quadratic and cubic nonlinearities. Phase-matched quadratic wave-mixing processes among the comb lines can be activated by low-power continuous wave pumping in the near infrared of a radially poled lithium niobate whispering gallery resonator. We examine both separate and coexisting intracavity doubly resonant second-harmonic generation and parametric oscillation processes and find that modulation instabilities may lead to the formation of coupled comb arrays extending over multiple octaves. In the temporal domain, the frequency combs may correspond to pulse trains or even to a single pulse circulating in the cavity. (C) 2016 Optical Society of America
- Published
- 2016
- Full Text
- View/download PDF
25. Frequency combs in quadratically nonlinear resonators
- Author
-
Tobias Hansson, Stéphane Coen, François Leo, Iolanda Ricciardi, Maurizio De Rosa, Miro Erkintalo, and Stefan Wabnitz
- Subjects
Physics ,Quadratic growth ,Nonlinear system ,Resonator ,Optics ,Mode-locking ,business.industry ,Physics::Optics ,Transmission coefficient ,business - Abstract
We describe the physics and modelling of frequency combs and corresponding temporal patterns in coherently driven, quadratically nonlinear resonators.
- Published
- 2016
26. Theory of quadratic optical frequency combs
- Author
-
François Leo, Stéphane Coen, Stefan Wabnitz, Miro Erkintalo, Tobias Hansson, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
Physics ,optical fibers ,nonlinear optics ,optical solitons ,Kerr effect ,four wave mixing ,Sum-frequency generation ,optical resonators ,Nonlinear optics ,Second-harmonic generation ,Physics::Optics ,parametric oscillators ,01 natural sciences ,Optical parametric amplifier ,010309 optics ,Frequency comb ,Quadratic equation ,Cross-polarized wave generation ,Quantum mechanics ,0103 physical sciences ,parametric processes ,010306 general physics ,Envelope (waves) - Abstract
We present theoretical studies of optical frequency comb generation in dispersive quadratically nonlinear resonators. We introduce a mean field equation approach to model cavity enhanced second harmonic generation and find excellent agreement with recent experimental frequency comb observations. We also develop a more general approach based on a single envelope equation for both quadratic and Kerr nonlinear cavities.
- Published
- 2016
27. Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation
- Author
-
Iolanda Ricciardi, Tobias Hansson, Stéphane Coen, Miro Erkintalo, M. De Rosa, François Leo, and Stefan Wabnitz
- Subjects
Physics ,Sum-frequency generation ,FOS: Physical sciences ,General Physics and Astronomy ,Second-harmonic generation ,dynamics ,01 natural sciences ,Instability ,frequency domain analysis ,harmonic analysis ,010309 optics ,Nonlinear system ,Resonator ,Frequency comb ,Classical mechanics ,Modulation ,0103 physical sciences ,Dissipative system ,Statistical physics ,010306 general physics ,Optics (physics.optics) ,Physics - Optics ,competing parametric oscillation ,quadratic nonlinear media ,solitary waves ,pulse-compression ,solitons ,microresonator ,resonator - Abstract
We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behavior. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems. We expect our findings to have wide impact on the study of temporal and spectral dynamics in a diverse range of dispersive, quadratically nonlinear resonators.
- Published
- 2016
- Full Text
- View/download PDF
28. Theory of Frequency Comb Generation in Cavity Enhanced Second Harmonic Generation
- Author
-
François Leo, Tobias Hansson, Miro Erkintalo, Stefan Wabnitz, Stéphane Coen, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
Physics ,Sum-frequency generation ,business.industry ,Second-harmonic generation ,Physics::Optics ,01 natural sciences ,010309 optics ,Frequency comb ,Nonlinear system ,Resonator ,Optics ,Mean field equation ,Quantum electrodynamics ,0103 physical sciences ,010306 general physics ,business ,optical frequency combs - Abstract
We theoretically investigate frequency comb generation in dispersive quadratically nonlinear resonators. We introduce a single mean field equation to model cavity enhanced second harmonic generation and find excellent agreement with recent experimental frequency comb observations.
- Published
- 2016
29. Low-temperature spectroscopy of the 12C2H2 (υ1 + υ3) band in a helium buffer gas
- Author
-
Iolanda Ricciardi, Pasquale Maddaloni, P. De Natale, L. Santamaria, Gabriele Santambrogio, V. Di Sarno, M. De Rosa, and Simona Mosca
- Subjects
Thermal equilibrium ,Physics ,Buffer gas ,chemistry.chemical_element ,Astronomy and Astrophysics ,Spectral line ,Boltzmann distribution ,Helium-4 ,chemistry ,Space and Planetary Science ,Diffusion (business) ,Atomic physics ,Spectroscopy ,Helium - Abstract
Buffer gas cooling with a 4He gas is used to perform laser-absorption spectroscopy of the 12C2H2 (υ1 + υ3) band at cryogenic temperatures. Doppler thermometry is first carried out to extract translational temperatures from the recorded spectra. Then, rotational temperatures down to 20 K are retrieved by fitting the Boltzmann distribution to the relative intensities of several ro-vibrational lines. The potential of our setup to tune the thermal equilibrium between translational and rotational degrees of freedom is also demonstrated. This can be used to reproduce in a controlled way the regime of non-local thermal equilibrium typically encountered in the interstellar medium. The underlying helium-acetylene collisional physics, relevant for modeling planetary atmospheres, is also addressed. In particular, the diffusion time of 12C2H2 in the buffer cell is measured against the 4He flux at two separate translational temperatures; the observed behavior is then compared with that predicted by a Monte Carlo simulation, thus providing an estimate for the respective total elastic cross sections: σel(100 K) = (4 ± 1) × 10-20 m2 and σel(25 K) = (7 ± 2) × 10-20 m2.
- Published
- 2015
30. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization
- Author
-
Paolo De Natale, Iolanda Ricciardi, Saveria Mosca, Maria Parisi, Pasquale Maddaloni, Simona Mosca, Maurizio De Rosa, and Luigi Santamaria Amato
- Subjects
Physics ,Total internal reflection ,business.industry ,Fabry-Perot ,Spectral density ,Resonance ,Physics::Optics ,Laser pumping ,high-resolution ,Atomic and Molecular Physics, and Optics ,Laser linewidth ,Optics ,Parametric oscillators and amplifiers ,Optical parametric oscillator ,business ,Fabry–Pérot interferometer ,Spectroscopy ,Spectral purity - Abstract
We stabilize the idler frequency of a singly resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 103Hz2/Hz is reached on average, with a Gaussian linewidth of 920Hz over 100ms, which reveals the potential for reaching spectral purity down to the hertz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.
- Published
- 2015
- Full Text
- View/download PDF
31. Frequency comb generation in continuously-pumped quadratic nonlinear media
- Author
-
Iolanda Ricciardi, Pasquale Maddaloni, L. Santamaria, Melchiorre F. Parisi, P. De Natale, M. De Rosa, and Simona Mosca
- Subjects
Frequency comb ,Engineering ,Nonlinear system ,Optics ,Quadratic equation ,Optical frequency comb ,business.industry ,Parametric processes ,Physics::Optics ,Second harmonic generation ,business - Abstract
We experimentally demonstrated frequency comb generation in a continuously pumped, cavity-enhanced second-harmonic generation system. Our system shows a striking similarity with generation and dynamics of frequency combs in Kerr microresonators, as confirmed by a simple three-wave theoretical model we developed. This analogy unveils the possibility to predict and observe new effects, paving the way for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
- Published
- 2015
- Full Text
- View/download PDF
32. First locking of the Virgo central area interferometer with suspension hierarchical control
- Author
-
L. Massonnet, F. Cleva, C. Palomba, L. Pinard, M. A. Bizouard, N. Morgado, F. Frasconi, R. Flaminio, V. Brisson, F. Ricci, Ph. Heusse, D. Enard, A. Viceré, N. Arnaud, Fabrizio Barone, B. Perniola, E. Tournefier, P. Rapagnani, M. Yvert, R. Passaquieti, Enrico Calloni, Ettore Majorana, Frédérique Marion, C. Bradaschia, M. Davier, J.-P. Coulon, P. Puppo, A. Eleuteri, Julien Moreau, H. Heitmann, J.-D. Fournier, G. Cella, R. De Rosa, F. Martelli, A. Di Virgilio, C. N. Man, V. Reita, M. Tonelli, Ruggero Stanga, Fausto Acernese, Lisa Barsotti, Alessandra Toncelli, A. Gennai, J. Y. Vinet, F. Travasso, F. Mornet, F. Fidecaro, E. Cuoco, D. Buskulic, Claude Boccara, A. Masserot, Luisa Bracci, L. Holloway, J.-M. Mackowski, P. Amico, P. La Penna, Leopoldo Milano, Iolanda Ricciardi, I Fiori, E. Chassande-Mottin, Regis Barille, Christian Corda, V. Loriette, M. Punturo, Alban Remillieux, G. Guidi, S. Kreckelberg, P. Hello, E. Campagna, Rosa Poggiani, F. Vetrano, Archana Pai, F. Paoletti, François Bondu, José Pacheco, Thomas Cokelaer, M. Varvella, Giorgio Ivan Russo, L. Brocco, M. Mazzoni, G. Losurdo, K. Qipiani, Luca Gammaitoni, J. Ramonet, S. Frasca, B. Dujardin, G. Calamai, S. Braccini, B. Mours, L. Di Fiore, H. Vocca, D. Verkindt, D. Passuello, M. Barsuglia, V. Dattilo, A. Brillet, O. Veziant, L. Bosi, F. Beauville, Salvatore Solimeno, D. Babusci, F. Cavalier, G Conforto, A. Giazotto, I. Ferrante, F. Moreau, M. Loupias, H. Trinquet, G. Giordano, F., Acernese, P., Amico, N., Arnaud, D., Babusci, R., Barillé, F., Barone, L., Barsotti, M., Barsuglia, F., Beauville, M. A., Bizouard, C., Boccara, F., Bondu, L., Bosi, C., Bradaschia, L., Bracci, S., Braccini, A., Brillet, V., Brisson, L., Brocco, D., Buskulic, G., Calamai, Calloni, Enrico, E., Campagna, F., Cavalier, G., Cella, E., Chassande Mottin, F., Cleva, T., Cokelaer, G., Conforto, C., Corda, J. P., Coulon, E., Cuoco, V., Dattilo, M., Davier, DE ROSA, Rosario, L., Di Fiore, A., Di Virgilio, B., Dujardin, A., Eleuteri, D., Enard, I., Ferrante, F., Fidecaro, I., Fiori, R., Flaminio, J. D., Fournier, S., Frasca, F., Frasconi, L., Gammaitoni, A., Gennai, A., Giazotto, G., Giordano, G., Guidi, H., Heitmann, P., Hello, P., Heusse, L., Holloway, S., Kreckelberg, P., La Penna, V., Loriette, M., Loupia, G., Losurdo, J. M., Mackowski, E., Majorana, C. N., Man, F., Marion, F., Martelli, A., Masserot, L., Massonnet, M., Mazzoni, Milano, Leopoldo, J., Moreau, F., Moreau, N., Morgado, F., Mornet, B., Mour, J., Pacheco, A., Pai, C., Palomba, F., Paoletti, R., Passaquieti, D., Passuello, B., Perniola, L., Pinard, R., Poggiani, M., Punturo, P., Puppo, K., Qipiani, J., Ramonet, P., Rapagnani, V., Reita, A., Remillieux, F., Ricci, I., Ricciardi, Russo, Guido, Solimeno, Salvatore, R., Stanga, A., Toncelli, M., Tonelli, E., Tournefier, F., Travasso, H., Trinquet, M., Varvella, D., Verkindt, F., Vetrano, O., Veziant, A., Viceré, J. Y., Vinet, H., Vocca, and M., Yvert
- Subjects
astrofisica ,control systems ,gravitational waves detectors ,interferometer ,interferometri ,onde gravitazionali ,servo and control equipment ,vibration isolation ,Gravitational wave detectors and experiments ,Interferometers ,Control systems ,Vibration isolation ,Inverted pendulum ,law.invention ,Optics ,law ,Astronomical interferometer ,Very low frequency ,Attenuator (electronics) ,Physics ,business.industry ,Michelson interferometer ,Astronomy and Astrophysics ,Interferometry ,Control system ,business - Abstract
Operation of the central portion of Virgo as a simple 6 m Michelson interferometer has given the first demonstration of the possibility to control an interferometer suspended from Virgo full scale multistage seismic attenuators using information derived from the interferometer locking signal. A special role in the control is played by the first stage of these suspensions, an inverted pendulum: besides its seismic preisolation action, this stage has positioning dynamics of several mm, and it allows to exert a very low frequency control at the upper level of the suspension using the interferometer fringe signal. The application of this feedback to the top-stage of the suspension allows corrections of drifts, such as tidal ones, at a stage of the suspension where a large dynamic range in displacements is available, without introducing noise at the level of the mirror, resulting in a significant reduction of the lock keeping force applied directly on the mirror at the lowest stage of the attenuator.
- Published
- 2004
- Full Text
- View/download PDF
33. Assessing the time constancy of the proton-to-electron mass ratio by precision ro-vibrational spectroscopy of a cold molecular beam
- Author
-
Paolo De Natale, Iolanda Ricciardi, Saveria Mosca, Pasquale Maddaloni, Valentina Di sarno, Simona Mosca, Gabriele Santambrogio, Maurizio De Rosa, and Luigi Santamaria Amato
- Subjects
Materials science ,Optical fiber ,business.industry ,Physics::Optics ,Mass ratio ,Proton-to-electron mass ratio ,Atomic and Molecular Physics, and Optics ,Collimated light ,law.invention ,Lens (optics) ,Optics ,Two-photon Ramsey spectroscopy ,law ,Buffer gas cooling ,Physical and Theoretical Chemistry ,Atomic physics ,business ,Quantum cascade laser ,Molecular beam ,Spectroscopy ,Beam (structure) - Abstract
We report the design of an experiment that aims to constrain, over a-few-year timescale, the fractional temporal variation of the proton-to-electron mass ratio, beta = m(p)/m(e), at a level of 10(-15)/yr by means of a spectroscopic frequency measurement on a beam of cold CF3H molecules. This is extracted from a buffer-gas-cooling source and then collimated by means of an electrostatic hexapole lens. Employed in a two-photon Ramsey-fringes interrogation scheme, the probe source is based on a mid-infrared quantum cascade laser, phase-locked to a specially-developed optical frequency comb that is ultimately referenced to the Cs primary standard via an optical fiber link. (C) 2014 Elsevier Inc. All rights reserved.
- Published
- 2014
- Full Text
- View/download PDF
34. Periodically-Poled Ferroelectric Crystals Based OPO—A Powerful Source for Precision Spectroscopy
- Author
-
Pasquale Maddaloni, Jean Jacques Zondy, M. De Rosa, E. De Tommasi, Iolanda Ricciardi, Simona Mosca, A. Rocco, and P. De Natale
- Subjects
OPOS ,Materials science ,Infrared ,business.industry ,Precision spectroscopy ,Physics::Optics ,Radiation ,Laser ,law.invention ,Laser linewidth ,law ,Optical parametric oscillator ,Optoelectronics ,business ,Spectroscopy - Abstract
Advances in material science and laser sources renewed the interest in optical parametric oscillators (OPOs). A major attraction of OPOs is the possibility to coherently generate new frequencies over extended tunability ranges. These characteristics are of great interest for spectroscopic applications, which require stable cw highly-coherent radiation sources in a wide range of frequencies, from visible-UV to infrared. We briefly present the operational principles of OPOs, with particular emphasis on the aspects related to spectroscopic applications. Then, we report on recent results achieved with a narrow-linewidth singly-resonant cw OPO, emitting in the MIR, used for high-resolution spectroscopy of molecular transitions.
- Published
- 2014
- Full Text
- View/download PDF
35. Novel infrared sources and spectroscopic techniques for cutting edge environmental metrology
- Author
-
M. De Rosa, Iacopo Galli, Giovanni Giusfredi, Iolanda Ricciardi, Pablo Cancio, Simone Borri, Saverio Bartalini, P. De Natale, and Davide Mazzotti
- Subjects
Materials science ,Spectrometer ,business.industry ,Infrared ,Astrophysics::Instrumentation and Methods for Astrophysics ,Physics::Optics ,Laser ,Metrology ,law.invention ,Cascade ,law ,Environmental monitoring ,Optoelectronics ,Physics::Atomic Physics ,Instrumentation (computer programming) ,business ,Quantum well - Abstract
Unprecedented combination of quantum cascade lasers, nonlinear sources and techniques, enhancement cavities and frequency standards is paving the way to new methodologies and deployable instrumentation for metrological-grade environmental monitoring. © 2014 OSA
- Published
- 2014
- Full Text
- View/download PDF
36. Laser interferometric adaptive optics system for a three-meter suspended Michelson interferometer for low-frequency seismic noise measurement
- Author
-
Antonio Eleuteri, Fabrizio Barone, Rosario De Rosa, Ketevan Qipiani, Silvio Pardi, Iolanda Ricciardi, Leopoldo Milano, Saverio Avino, Fausto Acernese, Enrico Calloni, Fausto, Acernese, Saverio, Avino, Calloni, Enrico, Fabrizio, Barone, DE ROSA, Rosario, Antonio, Eleuteri, Leopoldo, Milano, Ketevan, Qipiani, Silvio, Pardi, and Iolanda, Ricciardi
- Subjects
Physics ,Atom interferometer ,Interferometric visibility ,business.industry ,Intensity interferometer ,Michelson interferometer ,Wavefront sensor ,law.invention ,Interferometry ,Optics ,law ,Astronomical interferometer ,Optical system design ,business ,Adaptive optics - Abstract
We present a study and preliminary experimental results on the possibility of using an adaptive optics system for reduction of geometrical fluctuations of input laser beam in long baseline interferometric detectors of gravitational waves. Presently used completely passive systems are expected to reduce fluctuations only at a level that, due to coupling of geometrical fluctuations with interferometer asymmetries, impose requirements on interferometer operation which are at the limit of present technology. Active pre-stabilization could reduce fluctuations and relax these requirements, allowing a safer and more robust interferometer operation on the planned time-scale of years of continuous data acquisition. The system and the methodologies we have developed are going to be adapted to the Mode Cleaner of the IDGW-3P, a prototype of three-meter suspended Michelson Interferometer expressely developed for Seismic Noise measurement, now becoming operational in Napoli.
- Published
- 2004
37. Low-loss coatings for the VIRGO large mirrors
- Author
-
Roland Geyl, Laurent Mazuray, Jean Pierre Chatard, Claude Amra, F. Beauville, D. Buskulic, R. Flaminio, F. Marion, A. Masserot, L. Massonnet, B. Mours, F. Moreau, J. Ramonet, E. Tournefier, D. Verkindt, O. Veziant, M. Yvert, Regis Barille, Vincenzino Dattilo, Daniel Enard, Franco Frasconi, Alberto Gennai, Paolo La Penna, Magali Loupias, Federico Paoletti, L. Bracci, Giovanni Calamai, E. Campagna, G. Conforto, E. Cuoco, I. Fiori, G. Guidi, G. Losurdo, Fabrizio Martelli, Massimo Mazzoni, B. Perniola, Ruagero N. Stanga, Flavio Vetrano, A. Vicere, D. Babusci, Gianfranco Giordano, Jean Marie Mackowski, Nazario Morgado, Laurent Pinard, Alban Remillieux, Fausto Acernese, Fabrizio Barone, Luciano Di Fiore, Antonio Eleuteri, Leopoldo Milano, Ketevan Qipiani, Iolanda Ricciardi, RUSSO, GUIDO, Salvatore Solimeno, M. Varvella, Francois Bondu, Alain Brillet, Eric Chassande Mottin, Frederic Cleva, T. Cokelaer, J. P. Coulon, B. Dujardin, J. D. Fournier, H. Heitmann, Catherine N. Man, F. Mornet, J. Pacheco, A. Pai, Herve Trinquet, J. Y. Vinet, N. Arnaud, M. Barsuglia, M. A. Bizouard, V. Brisson, F. Cavalier, M. Davier, P. Hello, P. Heusse, S. Kreckelberg, A. Claude Boccara, Vincent Loriette, J. Moreau, V. Reita, P. Amico, L. Bosi, Luca Gammaitoni, M. Punturo, F. Travasso, H. Vocca, L. Barsotti, S. Braccini, C. Bradaschia, G. Cella, C. Corda, A. Di Virgilio, I. Ferrante, F. Fidecaro, Adalberto Giazotto, E. Majorana, L. Holloway, R. Passaquieti, D. Passuello, R. Poggiani, A. Toncelli, M. Tonelli, L. Brocco, S. Frasca, C. Palomba, P. Puppo, P. Rapagnani, F. Ricci, David Rimmer, Philip J. Rogers, Norbert Kaiser, Peter N. J. Dennis, Lingli Wang, H. Angus Macleod, Rolf Wartmann, CALLONI, ENRICO, DE ROSA, ROSARIO, Roland, Geyl, Laurent, Mazuray, Jean Pierre, Chatard, Claude, Amra, F., Beauville, D., Buskulic, R., Flaminio, F., Marion, A., Masserot, L., Massonnet, B., Mour, F., Moreau, J., Ramonet, E., Tournefier, D., Verkindt, O., Veziant, M., Yvert, Regis, Barille, Vincenzino, Dattilo, Daniel, Enard, Franco, Frasconi, Alberto, Gennai, Paolo La, Penna, Magali, Loupia, Federico, Paoletti, L., Bracci, Giovanni, Calamai, E., Campagna, G., Conforto, E., Cuoco, I., Fiori, G., Guidi, G., Losurdo, Fabrizio, Martelli, Massimo, Mazzoni, B., Perniola, Ruagero N., Stanga, Flavio, Vetrano, A., Vicere, D., Babusci, Gianfranco, Giordano, Jean Marie, Mackowski, Nazario, Morgado, Laurent, Pinard, Alban, Remillieux, Fausto, Acernese, Fabrizio, Barone, Calloni, Enrico, DE ROSA, Rosario, Luciano Di, Fiore, Antonio, Eleuteri, Leopoldo, Milano, Ketevan, Qipiani, Iolanda, Ricciardi, Russo, Guido, Salvatore, Solimeno, M., Varvella, Francois, Bondu, Alain, Brillet, Eric Chassande, Mottin, Frederic, Cleva, T., Cokelaer, J. P., Coulon, B., Dujardin, J. D., Fournier, H., Heitmann, Catherine N., Man, F., Mornet, J., Pacheco, A., Pai, Herve, Trinquet, J. Y., Vinet, N., Arnaud, M., Barsuglia, M. A., Bizouard, V., Brisson, F., Cavalier, M., Davier, P., Hello, P., Heusse, S., Kreckelberg, A., Claude Boccara, Vincent, Loriette, J., Moreau, V., Reita, P., Amico, L., Bosi, Luca, Gammaitoni, M., Punturo, F., Travasso, H., Vocca, L., Barsotti, S., Braccini, C., Bradaschia, G., Cella, C., Corda, A., Di Virgilio, I., Ferrante, F., Fidecaro, Adalberto, Giazotto, E., Majorana, L., Holloway, R., Passaquieti, D., Passuello, R., Poggiani, A., Toncelli, M., Tonelli, L., Brocco, S., Frasca, C., Palomba, P., Puppo, P., Rapagnani, F., Ricci, David, Rimmer, Philip J., Roger, Norbert, Kaiser, Peter N. J., Denni, Lingli, Wang, H., Angus Macleod, Rolf, Wartmann, Amra, Claude, Beauville, F., Buskulic, D., Flaminio, R., Marion, F., Masserot, A., Massonnet, L., Mours, B., Moreau, F., Ramonet, J., Tournefier, E., Verkindt, D., Veziant, O., Yvert, M., Barillé, R., Dattilo, V., Enard, D., Frasconi, F., Gennai, A., la Penna, P., Loupias, M., Paoletti, F., Bracci, L., Calamai, G., Campagna, E., Conforto, MARIA LETIZIA, Cuoco, E., Fiori, I., Guidi, G., Losurdo, G., Martelli, F., Mazzoni, M., Perniola, B., Stanga, R., Vetrano, F., Viceré, A., Babusci, D., Giordano, G., Mackowski, J. -M., Morgado, N., Pinard, L., Remillieux, A., Acernese, F., Barone, F., Calloni, E., de Rosa, R., di Fiore, L., Eleuteri, A., Milano, L., Qipiani, K., Ricciardi, I., Russo, G., Solimeno, S., Varvella, M., Bondu, F., Brillet, A., Chassande-Mottin, E., Cleva, F., Cokelaer, T., Coulon, J. -P., Dujardin, B., Fournier, J. -D., Heitmann, H., Man, C. N., Mornet, F., Pacheco, J., Pai, A., Trinquet, H., Vinet, J. -Y., Arnaud, N., Barsuglia, M., Bizouard, M. A., Brisson, V., Cavalier, F., Davier, M., Hello, P., Heusse, P., Kreckelberg, S., Boccara, C., Loriette, V., Moreau, J., Reita, V., Amico, P., Bosi, L., Gammaitoni, L., Punturo, M., Travasso, F., Vocca, H., Barsotti, L., Braccini, S., Bradaschia, C., Celia, G., Corda, C., di Virgilio, A., Ferrante, I., Fidecaro, F., Giazotto, A., Majorana, E., Holloway, L., Passaquieti, R., Passuello, D., Poggiani, R., Toncelli, A., Tonelli, M., Brocco, L., Frasca, S., Palomba, C., Puppo, P., Rapagnani, P., Ricci, F., Beauville, F, Buskulic, D, Flaminio, R, Marion, F, Masserot, A, Massonnet, L, Mours, B, Moreau, F, Ramonet, J, Tournefier, E, Verkindt, D, Veziant, O, Yvert, M, Barille, R, Dattilo, V, Enard, D, Frasconi, F, Gennai, A, La Penna, P, Loupias, M, Paoletti, F, Bracci, L, Calamai, G, Campagna, E, Conforto, G, Cuoco, E, Fiori, I, Guidi, G, Losurdo, G, Martelli, F, Mazzoni, M, Perniola, B, Stanga, R, Vetrano, F, Vicere, A, Babusci, D, Giordano, G, Mackowski, Jm, Morgado, N, Pinard, L, Remillieux, A, Acernese, F, Barone, F, Di Fiore, L, Eleuteri, A, Milano, L, Qipiani, K, Ricciardi, I, Solimeno, S, Varvella, M, Bondu, F, Brillet, A, Chassande Mottin, E, Cleva, F, Cokelaer, T, Coulon, Jp, Dujardin, B, Fournier, Jd, Heitmann, H, Man, Cn, Mornet, F, Pacheco, J, Pai, A, Trinquet, H, Vinet, Jy, Arnaud, N, Barsuglia, M, Bizouard, Ma, Brisson, V, Cavalier, F, Davier, M, Hello, P, Heusse, P, Kreckelberg, S, Boccara, C, Loriette, V, Moreau, J, Reita, V, Amico, P, Bosi, L, Gammaitoni, L, Punturo, M, Travasso, F, Vocca, H, Barsotti, L, Braccini, S, Bradaschia, C, Cella, G, Corda, C, Di Virgilio, A, Ferrante, I, Fidecaro, F, Giazotto, A, Majorana, E, Holloway, L, Passaquieti, R, Passuello, D, Poggiani, R, Toncelli, A, Tonelli, M, Brocco, L, Frasca, S, Palomba, C, Puppo, P, and Rapagnani, P
- Subjects
Wavefront ,Physics ,Scattering ,business.industry ,Electronic, Optical and Magnetic Material ,Virgo interferometer ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Condensed Matter Physic ,Sputter deposition ,optics ,Applied Mathematic ,Interferometry ,Optics ,Optical coating ,Astronomical interferometer ,Optical system design ,Electrical and Electronic Engineering ,business ,Absorption (electromagnetic radiation) - Abstract
The goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction).
- Published
- 2004
38. Hybrid techniques for the digital control of mechanical and optical systems
- Author
-
Iolanda Ricciardi, Fausto Acernese, Guido Russo, Silvio Pardi, Leopoldo Milano, Rosario De Rosa, Fabrizio Barone, Antonio Eleuteri, Fausto, Acernese, Fabrizio, Barone, DE ROSA, Rosario, Antonio, Eleuteri, Leopoldo, Milano, Silvio, Pardi, Iolanda, Ricciardi, and Russo, Guido
- Subjects
Ethernet ,Engineering ,Network architecture ,Electric power system ,business.industry ,Control system ,Component-based software engineering ,Electronic engineering ,Data synchronization ,Digital control ,business ,Data transmission - Abstract
One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialised non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP and UDP protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system protoype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.
- Published
- 2004
39. High-speed multi-THz-range mode-hop-free tunable mid-IR laser spectrometer
- Author
-
Paolo De Natale, Rym Bouchendira, Malo Cadoret, Simona Mosca, Jérémie Courtois, Jean Jacques Zondy, Iolanda Ricciardi, and Maurizio De Rosa
- Subjects
Materials science ,Doppler spectroscopy ,Spectrometer ,business.industry ,Terahertz radiation ,Bandwidth (signal processing) ,wave ,Laser ,Atomic and Molecular Physics, and Optics ,law.invention ,Optics ,law ,Broadband ,Optical parametric oscillator ,Optoelectronics ,business ,optical parametric oscillator ,Diode - Abstract
We report on a widely (2.25 THz or 75 cm-1) and rapidly (4.5 THz/s) mode-hop-free (MHF) tunable mid-IR laser source at similar to 3.3 mu m, consisting of a 5%-MgO: LiNbO3 singly resonant optical parametric oscillator (SRO) pumped by an automated broadly MHF tunable extended-cavity diode laser (ECDL). The broad and rapid MHF tuning capability of the ECDL is readily transferred to the SRO idler wave owing to the quasi-noncritical pump spectral acceptance bandwidth of the quasi-phase-matching. Fast and broadband high-resolution Doppler spectroscopy measurements of the nu(3) band of CH4 are presented to illustrate the performance of the mid-IR optical parametric oscillator spectrometer. (C) 2013 Optical Society of America
- Published
- 2013
- Full Text
- View/download PDF
40. High-Resolution Spectroscopy of the Methane ν3 Band in the 3.3 µm Range using Widely Tunable Single-Frequency Optical Parametric Oscillators
- Author
-
Iolanda Ricciardi, Malo Cadoret, M. De Rosa, P. De Natale, Jean Jacques Zondy, Jérémie Courtois, Rym Bouchendira, and Simona Mosca
- Subjects
Range (particle radiation) ,Materials science ,business.industry ,High resolution ,Nonlinear optics ,Methane ,Semiconductor laser theory ,Optical pumping ,chemistry.chemical_compound ,Optics ,chemistry ,business ,Spectroscopy ,Parametric statistics - Abstract
We demonstrate fast idler wave mode-hop-free tuning over ∼30cm−1 around 3.3μm using a cw ppMgCLN-OPO pumped near 1063nm, allowing to capture in a single pump scan at a rate up to 20nm/s the entire Q-branch of CH 4 (3000–3025cm−1).
- Published
- 2013
- Full Text
- View/download PDF
41. A narrow-linewidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm
- Author
-
Paolo De Natale, Iolanda Ricciardi, Saveria Mosca, Pasquale Maddaloni, Simona Mosca, EDOARDO DE TOMMASI, Jean-jacques Zondy, Maurizio De Rosa, and ALESSANDRA ROCCO
- Subjects
Materials science ,business.industry ,Physics::Optics ,Rotational–vibrational spectroscopy ,Frequency comb ,Laser linewidth ,Optics ,Mode-locking ,Optical frequency comb ,Fiber laser ,Sub-Doppler spectroscopy ,Optical parametric oscillator ,Hyperfine structure ,Physics::Atomic Physics ,Atomic physics ,business ,Spectroscopy - Abstract
We present a widely-tunable, singly-resonant optical parametric oscillator, emitting more than 1 W in the region between 2.7 and 4.2 μm. Two configurations have been studied in order to improve the frequency stability and the linewidth of the OPO emission. First, we stabilized the signal frequency to a high-finesse Fabry-Perot cavity. Then, we locked both pump and signal frequency to the frequency comb generated by a NIR fs mode-locked fibre laser, linked to the caesium primary standard. With this last configuration we carried out saturation spectroscopy of several transitions belonging to the ν1 rovibrational band of CH3I, resolving their electronic quadrupole hyperfine structure, and determining the absolute frequency of the hyperfine components with a 50-kHz-uncertainty. An upper limit for the idler linewidth has been estimated as 200 kHz FWHM.
- Published
- 2012
- Full Text
- View/download PDF
42. Virgo: a laser interferometer to detect gravitational waves
- Author
-
Tjeerd Ketel, Antonio Eleuteri, M. Parisi, R. Passaquieti, L. Di Fiore, B. Mours, A. Królak, M. Blom, F. Beauville, K. G. Arun, G. A. Prodi, R. DeSalvo, M. Barsuglia, Gianpietro Cagnoli, Gianluca Persichetti, V. Granata, Julien Moreau, B. Mansoux, D. Verkindt, G. Losurdo, Anna Dari, M. Doets, B. Canuel, F. Piergiovanni, G. Ballardin, T Maiani, L. Giacobone, Y. Minenkov, M. Pietka, Patrice Hello, E. Turri, X Grave, R. Morand, L. Bonelli, M. Davier, G. Pagliaroli, I. Maksimovic, J. Marque, R. L. Ward, R. Hermel, G. Hemming, A. Masserot, Marco G. Tarallo, F. Vetrano, M. A. Mazzoni, L. Journet, O Lodygensky, J. P. Zendri, F. Nocera, G. Vedovato, V. Loriette, G. Barrand, P. N. Y. David, István Rácz, D. Boget, Ludovico Carbone, P. Popolizio, C Drezen, D. Passuello, C. Palomba, V Reita, Piotr Jaranowski, J.-M. Mackowski, Antoine Heidmann, Lisa Barsotti, Riccardo Sturani, Shourov Chatterji, Sofiane Aoudia, C. Arnault, Fausto Acernese, Andreas Freise, A. Di Virgilio, A. Giazotto, F. Mul, Alessandra Toncelli, G. Parguez, L. Brocco, Claude Boccara, J-Y. Vinet, I. Ferrante, S. Hamdani, R. Sottile, F. Cleva, M. Mantovani, Samuele Cortese, C Garnier, M. Lorenzini, V. Dattilo, S. D'Antonio, T. Bouedo, F. Travasso, R. Gouaty, Michał Bejger, Alessandra Corsi, L. Giordano, Mauro Tonelli, L. A. Forte, A. Dietz, M. Alshourbagy, M. Granata, L. Derome, L. Fabbroni, E. Genin, G. Cella, R. Bilhaut, L. Taffarello, A. Grado, J. L. Beney, B Dujardin, V. Fafone, R. Del Fabbro, M. Punturo, Andrea Chincarini, G. Gemme, M. Drago, P. Amico, P. Ganau, M. Galimberti, P. La Penna, F. Raffaelli, Eric Hennes, A. Pasqualetti, M. G. Beker, S. Petit, M. Pichot, Enrico Calloni, N. Liguori, L. Salconi, O. Veziant, V. Re, Guido Russo, Mirko Prato, C. Bradaschia, M. Dehamme, G. De Carolis, P. Dominici, L Matone, L. Holloway, F. Antonucci, Saverio Avino, O. Francois, A. Chiummo, Luca Gammaitoni, A. Paoli, F. Moreau, N. Leroy, B. L. Swinkels, F. Marion, F. Ricci, B. Dulach, D. Sentenac, G. Debreczeni, B. Lagrange, P. Puppo, Maurizio Ripepe, R. Paoletti, M. Loupias, F. Fidecaro, G. M. Guidi, E. Chassande-Mottin, S. Kreckelbergh, M. E. Gáspár, B. Lieunard, V. Moscatelli, K. Yamamoto, A. Brillet, M. Del Prete, Igor Neri, N. Letendre, L. Bosi, B. Bouhou, L. Pinard, C. Girard, T. Accadia, L. Naticchioni, Salvatore Vitale, M Laval, H Voet, F. Richard, P. Astone, M. Perciballi, Tania Regimbau, S. Frasca, M. Branchesi, R. Cavalieri, H. J. Bulten, L. Massonnet, L. Palladino, R. De Rosa, V. Malvezzi, A. Colla, A. Morgia, F. Frasconi, A. Basti, J. F. J. van den Brand, R. Flaminio, S. Birindelli, Tenglin Li, Archana Pai, F. Paoletti, P. Ruggi, S. Mancini, M. Iannarelli, S. Braccini, M. Tacca, D. Babusci, J.-P. Coulon, D. Jehanno, B. Sassolas, J. C. Lacotte, A Dominjon, L. Sperandio, A. C. Clapson, G. Conforto, F. Garufi, A. Viceré, H Groenstege, Andrea Gaddi, J.-D. Fournier, L. Rolland, Fabrizio Barone, C. Buy, I. Kowalska, Marie-Anne Bizouard, M. Bebronne, J. Franc, C. Michel, N. Morgado, J. C. Le Marec, V Sannibale, J. Colas, Ettore Majorana, G. Gennaro, P. Marin, M. Yvert, A. Rocchi, C. Eder, E. Campagna, P. Roudier, Fabio Marchesoni, R. Taddei, N. Arnaud, G. Daguin, J. L. Montorio, I. Fiori, R Pignard, R. Day, V. Boschi, Luisa Bracci, Roberto Cecchi, Tristan Briant, P. Rapagnani, M. Mohan, N. Man, S. Hebri, Nelson Christensen, A Remilleux, E. Tournefier, F. Cavalier, Matthew Evans, Stefano Bigotta, Ketevan Qipiani, C. Magazzù, Silvio Pardi, O. Torre, O. Rabaste, Leopoldo Milano, C. Tremola, M. Bitossi, A. Di Lieto, A. Reboux, E. Cuoco, S. Rapisarda, T. Pradier, D. Rosińska, M. Vasúth, Salvatore Solimeno, D. Enard, Elena Cesarini, B. Lopez, J. F. Hayau, E. Coccia, F. Robinet, G. Calamai, C. N. Colacino, Joseph M. Kovalik, V. Brisson, G. Matone, C. Van Den Broeck, B. Perniola, M. Was, Ruggero Stanga, S Tissot, Maria Grazia Bernardini, Ph Heusse, D. Buskulic, Zhenyu Zhang, C. Greverie, Rosa Poggiani, R. Chiche, H. Vocca, S. Karkar, A. Gennai, P. Mugnier, Simona Mosca, M. Vavoulidis, S. Vilalte, S. Van Der Putten, Tomasz Bulik, L. Fournier, Th. S. Bauer, François Bondu, G. Giordano, M. Colombini, Francesco Cottone, F. Bellachia, G. Vajente, D. Forest, A. Belletoile, W. Del Pozzo, P. F. Cohadon, H. Heitmann, D. S. Rabeling, Rocco Romano, M. Dialinas, F. Menzinger, Iolanda Ricciardi, F. Carbognani, M. Di Paolo Emilio, A. Bozzi, D. Huet, H Fang, R. Bonnand, E Pacaud, F. Martelli, S Mitra, Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut de Physique de Rennes ( IPR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), APC - Gravitation ( APC-Gravitation ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, T., Accadia, F., Acernese, M., Alshourbagy, P., Amico, F., Antonucci, S., Aoudia, N., Arnaud, C., Arnault, K. G., Arun, P., Astone, S., Avino, D., Babusci, G., Ballardin, F., Barone, G., Barrand, L., Barsotti, M., Barsuglia, A., Basti, Th S., Bauer, F., Beauville, M., Bebronne, M., Bejger, M. G., Beker, F., Bellachia, A., Belletoile, J. L., Beney, M., Bernardini, S., Bigotta, R., Bilhaut, S., Birindelli, M., Bitossi, M. A., Bizouard, M., Blom, C., Boccara, D., Boget, F., Bondu, L., Bonelli, R., Bonnand, V., Boschi, L., Bosi, T., Bouedo, B., Bouhou, A., Bozzi, L., Bracci, S., Braccini, C., Bradaschia, M., Branchesi, T., Briant, A., Brillet, V., Brisson, L., Brocco, T., Bulik, H. J., Bulten, D., Buskulic, C., Buy, G., Cagnoli, G., Calamai, Calloni, Enrico, E., Campagna, B., Canuel, F., Carbognani, L., Carbone, F., Cavalier, R., Cavalieri, R., Cecchi, G., Cella, E., Cesarini, E., Chassande Mottin, S., Chatterji, R., Chiche, A., Chincarini, A., Chiummo, N., Christensen, A. C., Clapson, F., Cleva, E., Coccia, P. F., Cohadon, C. N., Colacino, J., Cola, A., Colla, M., Colombini, G., Conforto, A., Corsi, S., Cortese, F., Cottone, J. P., Coulon, E., Cuoco, S., D'Antonio, G., Daguin, A., Dari, V., Dattilo, P. Y., David, M., Davier, R., Day, G., Debreczeni, G., De Caroli, M., Dehamme, R., Del Fabbro, W., Del Pozzo, M., del Prete, L., Derome, DE ROSA, Rosario, R., Desalvo, M., Dialina, L., Di Fiore, A., Di Lieto, M., Di Paolo Emilio, A., Di Virgilio, A., Dietz, M., Doet, P., Dominici, A., Dominjon, M., Drago, C., Drezen, B., Dujardin, B., Dulach, C., Eder, A., Eleuteri, D., Enard, M., Evan, L., Fabbroni, V., Fafone, H., Fang, I., Ferrante, F., Fidecaro, I., Fiori, R., Flaminio, D., Forest, Forte, LUCA ANTONIO, J. D., Fournier, L., Fournier, J., Franc, O., Francoi, S., Frasca, F., Frasconi, A., Freise, A., Gaddi, M., Galimberti, L., Gammaitoni, P., Ganau, C., Garnier, Garufi, Fabio, M. E., Gáspár, G., Gemme, E., Genin, A., Gennai, G., Gennaro, L., Giacobone, A., Giazotto, G., Giordano, L., Giordano, C., Girard, R., Gouaty, A., Grado, M., Granata, V., Granata, X., Grave, C., Greverie, H., Groenstege, G. M., Guidi, S., Hamdani, J. F., Hayau, S., Hebri, A., Heidmann, H., Heitmann, P., Hello, G., Hemming, E., Henne, R., Hermel, P., Heusse, L., Holloway, D., Huet, M., Iannarelli, P., Jaranowski, D., Jehanno, L., Journet, S., Karkar, T., Ketel, H., Voet, J., Kovalik, I., Kowalska, S., Kreckelbergh, A., Krolak, J. C., Lacotte, B., Lagrange, P., La Penna, M., Laval, J. C., Le Marec, N., Leroy, N., Letendre, T. G. F., Li, B., Lieunard, N., Liguori, O., Lodygensky, B., Lopez, M., Lorenzini, V., Loriette, G., Losurdo, M., Loupia, J. M., Mackowski, T., Maiani, E., Majorana, C., Magazzù, I., Maksimovic, V., Malvezzi, N., Man, S., Mancini, B., Mansoux, M., Mantovani, F., Marchesoni, F., Marion, P., Marin, J., Marque, F., Martelli, A., Masserot, L., Massonnet, G., Matone, L., Matone, M., Mazzoni, F., Menzinger, C., Michel, Milano, Leopoldo, Y., Minenkov, S., Mitra, M., Mohan, J. L., Montorio, R., Morand, F., Moreau, J., Moreau, N., Morgado, A., Morgia, S., Mosca, V., Moscatelli, B., Mour, P., Mugnier, F. A., Mul, L., Naticchioni, I., Neri, F., Nocera, E., Pacaud, G., Pagliaroli, A., Pai, L., Palladino, C., Palomba, F., Paoletti, R., Paoletti, A., Paoli, S., Pardi, G., Parguez, M., Parisi, A., Pasqualetti, R., Passaquieti, D., Passuello, M., Perciballi, B., Perniola, G., Persichetti, S., Petit, M., Pichot, F., Piergiovanni, M., Pietka, R., Pignard, L., Pinard, R., Poggiani, P., Popolizio, T., Pradier, M., Prato, G. A., Prodi, M., Punturo, P., Puppo, K., Qipiani, O., Rabaste, D. S., Rabeling, I., Rácz, F., Raffaelli, P., Rapagnani, S., Rapisarda, V., Re, A., Reboux, T., Regimbau, V., Reita, A., Remilleux, F., Ricci, I., Ricciardi, F., Richard, M., Ripepe, F., Robinet, A., Rocchi, L., Rolland, R., Romano, D., Rosińska, P., Roudier, P., Ruggi, Russo, Guido, L., Salconi, V., Sannibale, B., Sassola, D., Sentenac, S., Solimeno, R., Sottile, L., Sperandio, R., Stanga, R., Sturani, B., Swinkel, M., Tacca, R., Taddei, L., Taffarello, M., Tarallo, S., Tissot, A., Toncelli, M., Tonelli, O., Torre, E., Tournefier, F., Travasso, C., Tremola, E., Turri, G., Vajente, J. F. J., van den Brand, C., Van Den Broeck, S., van der Putten, M., Vasuth, M., Vavoulidi, G., Vedovato, D., Verkindt, F., Vetrano, O., Véziant, A., Viceré, J. Y., Vinet, S., Vilalte, S., Vitale, H., Vocca, R. L., Ward, M., Wa, K., Yamamoto, M., Yvert, J. P., Zendri, Z., Zhang, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des matériaux avancés (LMA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), (Astro)-Particles Physics, Mathematical Analysis, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and Max-Planck-Gesellschaft-Max-Planck-Gesellschaft
- Subjects
Gravitational-wave observatory ,PROTOTYPE ,01 natural sciences ,SCATTERED-LIGHT NOISE ,law.invention ,Detection of gravitational wave ,interferometers ,law ,Instrumentation ,gravitational wave ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,SEISMIC NOISE ,Detector ,SUPER ATTENUATOR ,Settore FIS/01 - Fisica Sperimentale ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Interferometry ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,1ST ,SUSPENSION ,Gravitational waves ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Optics ,Suspensions ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Detection theory ,Gravitational Waves ,Interferometric Detector ,Electronics ,010306 general physics ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,Lasers ,Michelson interferometer ,PERFORMANCE ,Antennas ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Sensitivity (electronics) ,SHOT-NOISE ,SYSTEM ,PENDULUM - Abstract
This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper. © 2012 IOP Publishing Ltd and Sissa Medialab srl.
- Published
- 2012
- Full Text
- View/download PDF
43. A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy
- Author
-
Paolo De Natale, Iolanda Ricciardi, Saveria Mosca, Pasquale Maddaloni, Simona Mosca, EDOARDO DE TOMMASI, Jean-jacques Zondy, Maurizio De Rosa, and ALESSANDRA ROCCO
- Subjects
Chemistry ,business.industry ,sub-Doppler spectroscopy ,Biophysics ,frequency stabilization ,Rotational–vibrational spectroscopy ,Condensed Matter Physics ,Signal ,Optical parametric amplifier ,Laser linewidth ,Optics ,Optical parametric oscillator ,Physical and Theoretical Chemistry ,Spectral resolution ,business ,Spectroscopy ,Molecular Biology ,optical parametric oscillator ,Line (formation) - Abstract
We present a narrow-linewidth, singly-resonant cw optical parametric oscillator, emitting more than 1 W in the 2.7-4.2 mu m range. The OPO is pumped by a narrow linewidth (40 kHz) fibre-laser system and the signal frequency is locked to a high-finesse Fabry-Perot cavity in order to increase the spectral resolution, thus obtaining a residual linewidth of 70 kHz for the signal. We tested the spectral performance of our OPO on several transitions in the nu(1) rovibrational band of CH3I, measuring line intensities and showing sub-Doppler dip detection.
- Published
- 2012
- Full Text
- View/download PDF
44. Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 µm
- Author
-
M. De Rosa, E. De Tommasi, Filippo Tamassia, G. Di Lonardo, Iolanda Ricciardi, P. De Natale, G. Gagliardi, Pietro Malara, Pasquale Maddaloni, Maddaloni P., Malara P., De Tommasi E., De Rosa M., Ricciardi I., Gagliardi G., Tamassia F., Di Lonardo G., and De Natale P.
- Subjects
Chemistry ,Analytical chemistry ,General Physics and Astronomy ,quantitative-determination ,raman-spectrosocy ,Matrix (mathematics) ,Absolute measurement ,Deuterium ,Position (vector) ,Primary standard ,ring-down spectroscopy ,hydrogen ,Quadrupole ,Physical and Theoretical Chemistry ,Atomic physics ,Spectroscopy ,off-axis ICOS ,Line (formation) - Abstract
The electric quadrupole fundamental (v=1
- Published
- 2010
- Full Text
- View/download PDF
45. VIRGO COMMISSIONING PROGRESS
- Author
-
Antonio Eleuteri, A. Spallicci, Luca Gammaitoni, P. Puppo, Julien Moreau, C. Palomba, A. Di Virgilio, D. Buskulic, M. Del Prete, F. Frasconi, S. Frasca, R. Flaminio, F. Menzinger, F. Travasso, M. Lorenzini, A. Masserot, Lisa Barsotti, F. Paoletti, P. Ruggi, P. Amico, P. La Penna, Alessandra Toncelli, F. Garufi, V. Brisson, F. Martelli, Guido Russo, F. Cavalier, Leopoldo Milano, D. Verkindt, S. Kreckelbergh, F. Vetrano, Iolanda Ricciardi, B. Mours, G. Losurdo, F. Carbognani, D. Babusci, M. Punturo, Alessandra Corsi, Francesco Cottone, L. Pinard, G. Vajente, E. Cesarini, François Bondu, V. Loriette, D. Grosjean, Saverio Avino, Fabio Marchesoni, P. Hello, R. Passaquieti, Fausto Acernese, N. Morgado, Claude Boccara, Anna Dari, Stefano Bigotta, M. Mantovani, F. Piergiovanni, M. Alshourbagy, F. Ricci, H. Heitmann, Salvatore Solimeno, M. Davier, F. Antonucci, G. Giordano, E. Campagna, G. Cella, S. Birindelli, V. Reita, N. Letendre, Fabrizio Barone, L. Giordano, S. Hebri, R. Cavalieri, M. Tonelli, E. Tournefier, R. Gouaty, J.-P. Coulon, A. Gennai, L. Bosi, J.-D. Fournier, I. Fiori, D. Passuello, S. Braccini, C. Tremola, F. Marion, N. Leroy, H. Vocca, M. A. Bizouard, Nelson Christensen, V. Dattilo, A. Brillet, A. Remillieux, R. De Rosa, F. Cleva, J. Marque, M. Laval, B. Dujardin, Enrico Calloni, Sofiane Aoudia, Marco G. Tarallo, J.-M. Mackowski, C. Moins, P. Rapagnani, M. Yvert, Christian Corda, L. Di Fiore, M. Barsuglia, Rosa Poggiani, Ettore Majorana, A.-C. Clapson, F. Nocera, S. Karkar, G. Ballardin, E. Genin, C. Bradaschia, E. Chassande-Mottin, M. A. Mazzoni, C. N. Man, F. Fidecaro, G. M. Guidi, A. Giazotto, P. Astone, F. Beauville, I. Ferrante, Ketevan Qipiani, A. Viceré, Silvio Pardi, E. Cuoco, B. Lopez, J-Y. Vinet, and A. Pasqualetti
- Published
- 2008
- Full Text
- View/download PDF
46. THE STATUS OF THE VIRGO GRAVITATIONAL WAVE DETECTOR
- Author
-
Iolanda Ricciardi, N. Letendre, R. Cavalieri, F. Carbognani, Marco G. Tarallo, M. Lorenzini, A. Masserot, E. Tournefier, C. Tremola, J.-M. Mackowski, J.-P. Coulon, J.-D. Fournier, M. Yvert, Ettore Majorana, A.-C. Clapson, H. Vocca, L. Giordano, S. Hebri, A. Di Virgilio, F. Ricci, I. Fiori, F. Paoletti, P. Ruggi, S. Kreckelbergh, M. Tonelli, R. Gouaty, F. Frasconi, R. Flaminio, A. Spallicci, D. Grosjean, G. Cella, M. Laval, N. Morgado, Sofiane Aoudia, F. Nocera, F. Vetrano, A. Pasqualetti, M. Alshourbagy, V. Dattilo, Fausto Acernese, Fabrizio Barone, M. Mantovani, Claude Boccara, Antonio Eleuteri, C. Bradaschia, P. Astone, S. Birindelli, F. Martelli, A. Brillet, A. Gennai, C. Moins, F. Antonucci, Luca Gammaitoni, Julien Moreau, V. Brisson, Ruggero Stanga, Christian Corda, F. Travasso, A. Remillieux, V. Reita, M. Del Prete, P. Amico, P. La Penna, R. De Rosa, Francesco Cottone, S. Frasca, Anna Dari, F. Cleva, D. Verkindt, L. Brocco, Rosa Poggiani, P. Puppo, Nelson Christensen, L. Pinard, S. Karkar, G. Vajente, S. Braccini, B. Dujardin, D. Buskulic, F. Garufi, V. Loriette, Enrico Calloni, D. Passuello, F. Menzinger, G. Losurdo, R. Passaquieti, F. Cavalier, L. Di Fiore, M. A. Mazzoni, M. A. Bizouard, J. Marque, B. Perniola, A. Giazotto, E. Cesarini, I. Ferrante, François Bondu, L. Milano, F. Marion, G.V. Russo, H. Heitmann, Fabio Marchesoni, P. Hello, N. Leroy, M. Barsuglia, F. Piergiovanni, G. Giordano, Alessandra Corsi, M. Davier, C. Palomba, Saverio Avino, B. Mours, M. Punturo, G. Ballardin, C. N. Man, J. Y. Vinet, F. Fidecaro, G. M. Guidi, Lisa Barsotti, Alessandra Toncelli, Ketevan Qipiani, Silvio Pardi, E. Cuoco, B. Lopez, E. Genin, E. Chassande-Mottin, F. Beauville, A. Viceré, L. Bosi, Stefano Bigotta, Salvatore Solimeno, P. Rapagnani, E. Campagna, D. Babusci, H. Kleinert, R.T. Jantzen, R. Ruffini, Acernese, F, Amico, P, Alshourbagy, M, Antonucci, F, Aoudia, S, Avino, S, Babusci, D, Ballardin, G, Barone, F, Barsotti, L, Barsuglia, M, Beauville, F, Bigotta, S, Birindelli, S, BIZOUARD M., A, Boccara, C, Bondu, F, Bosi, L, Bradaschia, C, Braccini, S, Brillet, A, Brisson, V, Brocco, L, Buskulic, D, Calloni, Enrico, Campagna, E, Cavalier, F, Cavalieri, R, Cella, G, Cesarini, E, CHASSANDE MOTTIN, E, Christensen, N, Corda, C, Cottone, F, CLAPSON A., C, Cleva, F, COULON J., P, Cuoco, E, Dari, A, Dattilo, V, Davier, M, DEL PRETE, M, DE ROSA, Rosario, DI FIORE, L, DI VIRGILIO, A, Dujardin, B, Eleuteri, A, Enard, D, Ferrante, I, Fidecaro, F, Fiori, I, Flaminio, R, FOURNIER J., D, Francois, O, Frasca, S, Frasconi, F, Freise, A, Gammaitoni, L, Garufi, Fabio, Gennai, A, Giazotto, A, Giordano, G, Giordano, L, Gouaty, R, Grosjean, D, Guidi, G, Hebri, S, Heitmann, H, Hello, P, Karkar, S, Kreckelbergh, S, LA PENNA, P, Laval, M, Leroy, N, Letendre, N, Lorenzini, M, Loriette, V, Loupias, M, Losurdo, G, Majorana, E, MAN C., N, Mantovani, M, Marchesoni, F, Marco, T, Marion, F, Marque, J, Martelli, F, Masserot, A, Mazzoni, M, Milano, L, Moins, C, Moreau, J, Morgado, N, Mours, B, Nocera, F, Pai, A, Palomba, C, Paoletti, F, Pardi, S, Pasqualetti, A, Passaquieti, R, Passuello, D, Perniola, B, Piergiovanni, F, Pinard, L, Poggiani, R, Punturo, M, Puppo, P, Qipiani, K, Rapagnani, P, Reita, V, Remillieux, A, Ricci, F, Ricciardi, I, Ruggi, P, Russo, Guido, Solimeno, S, Spallicci, A, Stanga, R, Tonelli, M, Toncelli, A, Tournefier, E, Travasso, F, Tremola, C, Vajente, G, Verkindt, D, Vetrano, F, Vicere', A, VINET J., Y, Vocca, H, and Yvert, M.
- Subjects
Physics ,Gravitational-wave observatory ,Einstein Telescope ,Tests of general relativity ,Gravitational wave ,Gravity Probe A ,Astronomy ,Astrophysics ,Equivalence principle ,Shapiro delay ,Gravitational redshift - Published
- 2008
- Full Text
- View/download PDF
47. VIRGO: a large interferometer for gravitational wave detection started its first scientific run
- Author
-
F. Garufi, A. Giazotto, Rocco Romano, I. Ferrante, F. Nocera, C. Tremola, F. Vetrano, D. Passuello, A. Di Lieto, Leopoldo Milano, H. Vocca, G. Pagliaroli, D. Buskulic, T. Regimbau, F. Menzinger, Francesco Cottone, Rosa Poggiani, L. Pinard, V. Dattilo, Frédérique Marion, B. Mours, E. Coccia, S. Kreckelbergh, Silvio Pardi, A. Brillet, E. Cuoco, E. Campagna, Th S. Bauer, Anna Dari, S. Van Der Putten, Guido Russo, V. Fafone, F. Martelli, C. Greverie, A. Remillieux, R. De Rosa, R. Cavalieri, F. Cleva, V. Granata, G. Vajente, Marie-Anne Bizouard, Christian Corda, Matthew Evans, N. Morgado, B. Lopez, D. Grosjean, S. Birindelli, L. Giordano, S. Hamdani, F. Frasconi, A. C. Clapson, A. Masserot, C. Palomba, Iolanda Ricciardi, A. Di Virgilio, M. Yvert, R. Terenzi, R. Flaminio, G. Cella, A. Rocchi, H. Heitmann, Stefano Bigotta, P. Puppo, Julien Moreau, M. Alshourbagy, L. Baggio, J.-P. Coulon, Enrico Calloni, Salvatore Solimeno, Sabrina D'Antonio, Sofiane Aoudia, A. Gennai, L. Di Fiore, Marco G. Tarallo, Lisa Barsotti, F. Travasso, F. Ricci, B. Dujardin, Alessandra Toncelli, D. Huet, C. Bradaschia, Y. Minenkov, M. Laval, Alessandro D. A. M. Spallicci, M. Lorenzini, P. Amico, M. Barsuglia, S. Braccini, P. La Penna, E. Genin, N. Leroy, P. Astone, Igor Neri, J.-D. Fournier, Simona Mosca, R. Passaquieti, N. Letendre, V. Brisson, L. Bosi, I. Fiori, E. Tournefier, F. Antonucci, C. N. Man, F. Piergiovanni, Alessandra Corsi, J. F. J. van der Brand, M. Punturo, M. Davier, E. C-Mottin, J.-M. Mackowski, P. Rapagnani, D. Verkindt, A. Viceré, Saverio Avino, F. Cavalier, J. Marque, Claude Boccara, Mauro Tonelli, F. Fidecaro, G. M. Guidi, C. Moins, G. Losurdo, G. Cagnoli, L. Rolland, Fabrizio Barone, S. Hebri, E. Cesarini, Fausto Acernese, M. Mantovani, Fabio Marchesoni, François Bondu, F. Paoletti, P. Ruggi, V. Loriette, Luca Gammaitoni, M. Del Prete, S. Frasca, Ettore Majorana, A. Pasqualetti, Patrice Hello, J-Y. Vinet, F., Acernese, M., Alshourbagy, P., Amico, F., Antonucci, S., Aoudia, P., Astone, S., Avino, L., Baggio, F., Barone, L., Barsotti, M., Barsuglia, T. S., Bauer, S., Bigotta, S., Birindelli, M., Bizouard, C., Boccara, F., Bondu, L., Bosi, S., Braccini, C., Bradaschia, A., Brillet, V., Brisson, D., Buskulic, G., Cagnoli, Calloni, Enrico, E., Campagna, F., Cavalier, R., Cavalieri, G., Cella, E., Cesarini, E. C., Mottin, A. C., Clapson, F., Cleva, E., Coccia, C., Corda, A., Corsi, F., Cottone, J. P., Coulon, E., Cuoco, S., D'Antonio, A., Dari, V., Dattilo, M., Davier, DE ROSA, Rosario, M., Del Prete, L., Di Fiore, A., Di Lieto, A., Di Virgilio, B., Dujardin, M., Evan, V., Fafone, I., Ferrante, F., Fidecaro, I., Fiori, R., Flaminio, J. D., Fournier, S., Frasca, F., Frasconi, L., Gammaitoni, Garufi, Fabio, E., Genin, A., Gennai, A., Giazotto, L., Giordano, V., Granata, C., Greverie, D., Grosjean, G., Guidi, S., Hamdani, S., Hebri, H., Heitmann, P., Hello, D., Huet, S., Kreckelbergh, P., La Penna, M., Laval, N., Leroy, N., Letendre, B., Lopez, M., Lorenzini, V., Loriette, G., Losurdo, J. M., Mackowski, E., Majorana, M., Mantovani, F., Marchesoni, F., Marion, J., Marque, F., Martelli, A., Masserot, F., Menzinger, Milano, Leopoldo, Y., Minenkov, C., Moin, J., Moreau, N., Morgado, S., Mosca, B., Mour, C. N., Man, I., Neri, F., Nocera, G., Pagliaroli, C., Palomba, F., Paoletti, S., Pardi, A., Pasqualetti, R., Passaquieti, D., Passuello, F., Piergiovanni, L., Pinard, R., Poggiani, M., Punturo, P., Puppo, P., Rapagnani, T., Regimbau, A., Remillieux, F., Ricci, I., Ricciardi, A., Rocchi, L., Rolland, R., Romano, P., Ruggi, Russo, Guido, Solimeno, Salvatore, A., Spallicci, M., Tarallo, R., Terenzi, A., Toncelli, M., Tonelli, E., Tournefier, F., Travasso, C., Tremola, G., Vajente, J. F. J., van der Brand, S., van der Putten, D., Verkindt, F., Vetrano, A., Vicerè, J. Y., Vinet, H., Vocca, M., Yvert, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), APC - Gravitation (APC-Gravitation), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire des matériaux avancés (LMA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Virgo, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), VIRGO, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ESPCI ParisTech, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,History ,Gravitational-wave observatory ,010308 nuclear & particles physics ,Gravitational wave ,Detector ,Settore FIS/01 - Fisica Sperimentale ,Astronomy ,Virgo interferometer ,01 natural sciences ,Particle detector ,LIGO ,Computer Science Applications ,Education ,Interferometry ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Astronomical interferometer ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics - Abstract
International audience; The VIRGO interferometer is the largest ground based European gravitational wave detector operating at the EGO Laboratory in the Pisa, Italy; countryside. During the last commissioning period relevant progress have been done in approaching its design sensitivity all over the detection bandwidth. Thanks to the effort of the whole Collaboration a long scientific run has been done collecting data for more than 4 months in conjunction with the LIGO detectors. The results obtained from the detector point of view are: a very good stability and a duty-cycle as high as 81% in science mode. In this paper we present the status of the VIRGO interferometer giving an overview of the experimental apparatus together with its most relevant features.
- Published
- 2008
- Full Text
- View/download PDF
48. Search for gravitational waves associated with GRB 050915a using the Virgo detector
- Author
-
Y. Minenkov, Giulia Pagliaroli, A. Gennai, S Chatterji, Sofiane Aoudia, P. Astone, N. Letendre, C. Palomba, V. Fafone, Claude Boccara, C. Greverie, E. Genin, Frédérique Marion, Iolanda Ricciardi, D. Sentenac, Mauro Tonelli, L. Rolland, M. Punturo, F. Carbognani, H. Vocca, P. Puppo, M. Lorenzini, Fabrizio Barone, M. Di Paolo Emilio, M. A. Bizouard, S. Hebri, O. Rabaste, F. Ricci, Francesco Cottone, J-Y. Vinet, A. Viceré, F. Paoletti, Luca Gammaitoni, N. Morgado, G. Ballardin, S. Braccini, Nelson Christensen, P. Rapagnani, L. Pinard, G. Vajente, R. Flaminio, J.-P. Coulon, A. Pasqualetti, E. Tournefier, B. L. Swinkels, L. Baggio, A. Rocchi, Anna Dari, Elena Cesarini, M. Del Prete, A. Giazotto, I. Ferrante, K. G. Arun, F. Garufi, F. Travasso, R. Cavalieri, S. Frasca, D. Grosjean, R. Passaquieti, D. Huet, E. Campagna, H. Heitmann, Tania Regimbau, P. Ruggi, L. Giordano, A. Di Lieto, C Corda, Matthew Evans, P. Amico, P. La Penna, Ettore Majorana, J.-D. Fournier, Lisa Barsotti, Giorgio Ivan Russo, V. Brisson, François Bondu, I. Fiori, Alessandra Toncelli, V. Granata, Igor Neri, Leopoldo Milano, M. Laval, F. Frasconi, N. Man, R. De Rosa, Salvatore Solimeno, Gianpietro Cagnoli, Fausto Acernese, F. Cavalier, M. Yvert, A. Masserot, S. Bigotta, F. Martelli, Simona Mosca, F. Piergiovanni, N. Leroy, F. Vetrano, M. Mantovani, Alessandra Corsi, M. Davier, E. Chassande-Mottin, G. Losurdo, Julien Moreau, C. Bradaschia, Saverio Avino, Rocco Romano, Silvio Pardi, A. Remillieux, E. Cuoco, Rosa Poggiani, F. Antonucci, B. Lopez, S. Birindelli, F. Fidecaro, G. M. Guidi, D. Buskulic, J. F. J. van den Brand, F. Menzinger, G. Cella, V. Loriette, B. Mours, S. Van Der Putten, E. Coccia, S. D'Antonio, L. Di Fiore, M. Barsuglia, C. Moins, J. M. Mackowski, A. Di Virgilio, L. Bosi, Fabio Marchesoni, P. Hello, M Alshourbagy, D. Passuello, F. Nocera, F. Cleva, D. Verkindt, R. Terenzi, Enrico Calloni, J. Marque, Th S. Bauer, V. Dattilo, A. Brillet, S. Hamdani, Geometry, (Astro)-Particles Physics, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), ESPCI ParisTech, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Virgo, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), VIRGO, F., Acernese, Avino, Saverio, F., Barone, Calloni, Enrico, DE ROSA, Rosario, L., Di Fiore, Garufi, Fabio, Giordano, Lara, Milano, Leopoldo, Mosca, Simona, Pardi, Silvio, I., Ricciardi, Russo, Guido, Solimeno, Salvatore, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Laboratoire d'Annecy de Physique des Particules (LAPP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Gravitation ( APC-Gravitation ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), and Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Gravitational-wave observatory ,Physics and Astronomy (miscellaneous) ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astrophysics::High Energy Astrophysical Phenomena ,GAMMA-RAY BURSTS ,BLACK-HOLE ,RADIATION ,COLLAPSE ,COINCIDENT ,EXPLORER ,EVENTS ,STARS ,RATES ,MASS ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics ,[ PHYS.ASTR.CO ] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,01 natural sciences ,Upper and lower bounds ,General Relativity and Quantum Cosmology ,Coincidence ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,0103 physical sciences ,010303 astronomy & astrophysics ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Gravitational wave ,Astrophysics (astro-ph) ,Settore FIS/01 - Fisica Sperimentale ,Detector ,Astronomy ,LIGO ,Amplitude ,[ SDU.ASTR.CO ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Gamma-ray burst - Abstract
In the framework of the expected association between gamma-ray bursts and gravitational waves, we present results of an analysis aimed to search for a burst of gravitational waves in coincidence with gamma-ray burst 050915a. This was a long duration gamma-ray burst detected by Swift during September 2005, when the Virgo gravitational wave detector was engaged in a commissioning run during which the best sensitivity attained in 2005 was exhibited. This offered the opportunity for Virgo's first search for a gravitational wave signal in coincidence with a gamma-ray burst. The result of our study is a set of strain amplitude upper-limits, based on the loudest event approach, for different but quite general types of burst signal waveforms. The best upper-limit strain amplitudes we obtain are h_{rss}=O(10^{-20})Hz^{-1/2} around 200-1500 Hz. These upper-limits allow us to evaluate the level up to which Virgo, when reaching nominal sensitivity, will be able to constrain the gravitational wave output associated with a long burst. Moreover, the analysis here presented plays the role of a prototype, crucial in defining a methodology for gamma-ray burst triggered searches with Virgo and opening the way for future joint analyses with LIGO., 26 pages, 10 figures
- Published
- 2008
- Full Text
- View/download PDF
49. Lock acquisition of the Virgo gravitational wave detector
- Author
-
G. Losurdo, G. Cagnoli, D. Passuello, M. A. Bizouard, M. Alshourbagy, F. Antonucci, Fabio Marchesoni, F. Paoletti, P. Ruggi, F. Frasconi, R. Flaminio, Tania Regimbau, J. F. J. van den Brand, L. Baggio, R. De Rosa, Frédérique Marion, V. Fafone, F. Travasso, M. Laval, C. Palomba, A. Rocchi, S. Kreckelbergh, P. Rapagnani, D. Grosjean, G. Ballardin, V. Brisson, Luca Gammaitoni, P. Puppo, F. Cavalier, L. Bosi, N. Letendre, L. Rolland, P. Amico, Fabrizio Barone, M. Mohan, A. Gennai, A. Di Virgilio, P. La Penna, M. Del Prete, S. Frasca, Anna Dari, Stefano Bigotta, S. Hamdani, Salvatore Solimeno, K.G. Arun, A. Di Lieto, F. Garufi, S. Hebri, A. Viceré, G. Cella, F. Vetrano, S. Birindelli, A. Giazotto, I. Ferrante, J.-Y. Vinet, Rosa Poggiani, Shourov Chatterji, D. Sentenac, Igor Neri, E. Tournefier, M. Punturo, O. Rabaste, V. Loriette, S. Van Der Putten, M. Tonelli, Elena Cesarini, F. Ricci, Iolanda Ricciardi, B. Mours, S. D'Antonio, Lisa Barsotti, C. N. Man, Alessandra Toncelli, V. Granata, F. Carbognani, H. Vocca, Francesco Cottone, L. Pinard, E. Coccia, F. Fidecaro, G. M. Guidi, N. Leroy, Simona Mosca, J.-M. Mackowski, A. Masserot, M. Di Paolo Emilio, Alessandra Corsi, G. Vajente, N. Morgado, François Bondu, L. Di Fiore, A. Pasqualetti, M. Barsuglia, Saverio Avino, Fausto Acernese, R. Passaquieti, Silvio Pardi, D. Huet, Th. S. Bauer, E. Cuoco, B. Lopez, M. Mantovani, B. L. Swinkels, Rocco Romano, M. Lorenzini, E. Genin, L. Milano, H. Heitmann, M. Yvert, D. Buskulic, M. Davier, F. Menzinger, E. Chassande-Mottin, Julien Moreau, F. Piergiovanni, E. Campagna, Matthew Evans, Claude Boccara, Ettore Majorana, R. Cavalieri, J.-P. Coulon, J.-D. Fournier, I. Fiori, Y. Minenkov, Sofiane Aoudia, F. Cleva, Patrice Hello, G. Pagliaroli, C. Greverie, Christian Corda, R. Terenzi, C. Bradaschia, S. Mitra, D. Verkindt, Enrico Calloni, P. Astone, J. Marque, F. Nocera, S. Braccini, V. Dattilo, C. Michel, A. Brillet, Ecole Supérieure de Physique et de Chimie Industrielles ( ESPCI ), Mairie de Paris, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), APC - Gravitation ( APC-Gravitation ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Virgo, Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), VIRGO, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), F., Acernese, M., Alshourbagy, P., Amico, F., Antonucci, S., Aoudia, K. G., Arun, P., Astone, Avino, Saverio, L., Baggio, G., Ballardin, F., Barone, L., Barsotti, M., Barsuglia, Bauer, T. h. S., S., Bigotta, S., Birindelli, M. A., Bizouard, C., Boccara, F., Bondu, L., Bosim, S., Braccini, C., Bradaschia, A., Brillet, V., Brisson, D., Buskulic, G., Cagnoli, Calloni, Enrico, E., Campagna, F., Carbognani, F., Cavalier, R., Cavalieri, G., Cella, E., Cesarini, E., Chassande Mottin, S., Chatterji, F., Cleva, E., Coccia, C., Corda, A., Corsi, F., Cottone, J. P., Coulon, E., Cuoco, S., D’Antonio, A., Dari, V., Dattilo, M., Davier, DE ROSA, Rosario, M., Del Prete, L., Di Fiore, A., Di Lieto, M., Di Paolo Emilio, A., Di Virgilio, M., Evan, V., Fafone, I., Ferrante, F., Fidecaro, I., Fiori, R., Flaminio, J. D., Fournier, S., Frasca, F., Frasconi, L., Gammaitoni, Garufi, Fabio, E., Genin, A., Gennai, A., Giazotto, V., Granata, C., Greverie, D., Grosjean, G., Guidi, S., Hamdani, S., Hebri, H., Heitmann, P., Hello, D., Huet, S., Kreckelbergh, P., La Penna, M., Laval, N., Leroy, N., Letendre, B., Lopez, M., Lorenzini, V., Loriette, G., Losurdo, J. M., Mackowski, E., Majorana, C. N., Man, M., Mantovani, F., Marchesoni, F., Marion, J., Marque, A., Masserot, F., Menzinger, C., Michel, Milano, Leopoldo, Y., Minenkov, S., Mitra, M., Mohan, J., Moreau, N., Morgado, Mosca, Simona, B., Mour, I., Neri, F., Nocera, G., Pagliaroli, C., Palomba, F., Paoletti, Pardi, Silvio, A., Pasqualetti, R., Passaquieti, D., Passuello, F., Piergiovanni, L., Pinard, R., Poggiani, M., Punturo, P., Puppo, O., Rabaste, P., Rapagnani, T., Regimbau, F., Ricci, I., Ricciardi, A., Rocchi, L., Rolland, R., Romano, P., Ruggi, D., Sentenac, Solimeno, Salvatore, B. L., Swinkel, R., Terenzi, A., Toncelli, M., Tonelli, E., Tournefier, F., Travasso, G., Vajente, J. F. J., van den Brand, S., van der Putten, D., Verkindt, F., Vetrano, A., Viceré, J. Y., Vinet, H., Vocca, M., Yvert, Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and (Astro)-Particles Physics
- Subjects
Gravitational-wave observatory ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Physics::Instrumentation and Detectors ,Physics::Optics ,Optical instruments ,01 natural sciences ,VIRGO detector ,Gravitational wave detectors ,Finesse ,Data acquisition ,Gravitational-wave detector ,Lock acquisition ,Working point ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics ,Fabry-Perot interferometers ,Gravitational effects ,Gravity waves ,Interferometers ,Interferometry ,Mergers and acquisitions ,Control systems ,Fabry-Perot cavities ,Gravitational-wave detection ,Optical configurations ,Scientific data ,Virgo interferometer ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Detector ,Settore FIS/01 - Fisica Sperimentale ,Astrophysics::Instrumentation and Methods for Astrophysics ,[ SDU.ASTR.CO ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Record locking ,[ PHYS.ASTR.CO ] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,010309 optics ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Optics ,control systems ,gravitational wave detectors ,interferometry ,lock acquisition ,0103 physical sciences ,SDG 7 - Affordable and Clean Energy ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,Astronomy and Astrophysics ,business ,INTERFEROMETER - Abstract
The Virgo interferometer for gravitational wave detection has concluded four months of scientific data acquisition in its final optical configuration (a power-recycled interferometer with Fabry-Perot cavities in the arms). The lock acquisition technique developed to bring and keep the Virgo detector on its working point largely proved to be very efficient and robust. In this paper we describe the variable finesse lock acquisition technique and we discuss the performance of the whole locking system. (C) 2008 Elsevier B.V. All rights reserved.
- Published
- 2008
- Full Text
- View/download PDF
50. Status of Virgo detector
- Author
-
F. Cleva, Francesco Cottone, R. De Rosa, L. Pinard, F. Martelli, Fausto Acernese, F. Garufi, G. Vajente, P. Ruggi, Fabio Marchesoni, R. Flaminio, D. Buskulic, Giorgio Ivan Russo, Leopoldo Milano, L. Di Fiore, B. Mours, M. Mantovani, Enrico Calloni, V. Brisson, Lisa Barsotti, D. Passuello, M. Barsuglia, F. Vetrano, C. Palomba, Alessandra Toncelli, Anna Dari, M. Alshourbagy, E. Campagna, H. Heitmann, N. Morgado, Marco G. Tarallo, A. Pasqualetti, M. Laval, M. Lorenzini, V. Reita, K. Qipiani, P. Rapagnani, S. Birindelli, Luca Gammaitoni, P. Puppo, C. N. Man, F. Cavalier, B. Dujardin, F. Nocera, F. Paoletti, J.-M. Mackowski, E. Chassande-Mottin, J.-Y. Vinet, C. Bradaschia, F. Ricci, S. Kreckelbergh, F. Travasso, M. Del Prete, S. Frasca, Alban Remillieux, Rosa Poggiani, A. C. Clapson, Silvio Pardi, F. Fidecaro, E. Cuoco, B. Lopez, S. Karkar, P. Amico, P. La Penna, V. Dattilo, G. Losurdo, M. Punturo, G. Ballardin, M. Tonelli, E. Genin, A. Brillet, François Bondu, V. Loriette, F. Beauville, F. Marion, D. Babusci, M. Yvert, P. Astone, D. Verkindt, Fabrizio Barone, Alessandra Corsi, Julien Moreau, C. Moins, S. Hebri, Marina Mazzoni, Patrice Hello, A. Di Virgilio, F. Frasconi, J. Marque, S. Bigotta, A. Giazotto, Saverio Avino, I. Ferrante, A. Masserot, Ettore Majorana, F. Antonucci, Iolanda Ricciardi, Salvatore Solimeno, F. Carbognani, Nelson Christensen, E. Tournefier, G. Giordano, Sofiane Aoudia, Elena Cesarini, D. Grosjean, R. Passaquieti, F. Piergiovanni, A. Gennai, M. Davier, Marie-Anne Bizouard, Christian Corda, F. Menzinger, L. Bosi, R. Gouaty, N. Letendre, A. Viceré, G. Cella, Claude Boccara, L. Giordano, S. Braccini, G. Guidi, R. Cavalieri, J.-P. Coulon, A. Eleuteri, Alessandro D. A. M. Spallicci, J.-D. Fournier, C. Tremola, I. Fiori, H. Vocca, N. Leroy, DE ROSA, Rosario, Milano, Leopoldo, Garufi, Fabio, F., Acernese, Calloni, Enrico, L., Di Fiore, Giordano, Lara, Solimeno, Salvatore, Avino, Saverio, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), ESPCI ParisTech, APC - Gravitation ( APC-Gravitation ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Virgo, Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), VIRGO, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), APC - Gravitation (APC-Gravitation), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Gravitational-wave observatory ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,Detector ,Real-time computing ,Astronomy ,Limiting ,01 natural sciences ,Continuous data ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,0103 physical sciences ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Sensitivity (control systems) ,010303 astronomy & astrophysics - Abstract
International audience; The commissioning of the Virgo gravitational wave detector has restarted after several major hardware upgrades carried out during winter 2005. Now Virgo is fully operative and its sensitivity greatly improved and continually improving. A program of short scientific data taking has already started and Virgo is moving towards a period of continuous data taking, which should start at the end of May 2007. The actual status of the Virgo detector is reported, describing the actual detector sensitivity as well as the limiting noises and the mid-term plans.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.