1. Testbeam results of irradiated SiGe BiCMOS monolithic silicon pixel detector without internal gain layer
- Author
-
Moretti, T., Milanesio, M., Cardella, R., Kugathasan, T., Picardi, A., Semendyaev, I., Elviretti, M., Rücker, H., Nakamura, K., Takubo, Y., Togawa, M., Cadoux, F., Cardarelli, R., Cecconi, L., Débieux, S., Favre, Y., Fenoglio, C. A., Ferrere, D., Gonzalez-Sevilla, S., Iodice, L., Kotitsa, R., Magliocca, C., Nessi, M., Pizarro-Medina, A., Iglesias, J. Sabater, Saidi, J., Pinto, M. Vicente Barreto, Zambito, S., Paolozzi, L., and Iacobucci, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Samples of the monolithic silicon pixel ASIC prototype produced in 2022 within the framework of the Horizon 2020 MONOLITH ERC Advanced project were irradiated with 70 MeV protons up to a fluence of 1 x 1016 neq/cm2, and then tested using a beam of 120 GeV/c pions. The ASIC contains a matrix of 100 \mu m pitch hexagonal pixels, readout out by low noise and very fast frontend electronics produced in a 130 nm SiGe BiCMOS technology process. The dependence on the proton fluence of the efficiency and the time resolution of this prototype was measured with the frontend electronics operated at a power density between 0.13 and 0.9 W/cm2. The testbeam data show that the detection efficiency of 99.96% measured at sensor bias voltage of 200 V before irradiation becomes 96.2% after a fluence of 1 x 1016 neq/cm2. An increase of the sensor bias voltage to 300 V provides an efficiency to 99.7% at that proton fluence. The timing resolution of 20 ps measured before irradiation rises for a proton fluence of 1 x 1016 neq/cm2 to 53 and 45 ps at HV = 200 and 300 V, respectively.
- Published
- 2024