32 results on '"Institute of Resource Ecology [Dresden] (IRE)"'
Search Results
2. Complexation of neptunium(V) with aqueous phosphate using a dual experimental and quantum chemical approach
- Author
-
Miladi, Eya, Réal, Florent, Vallet, Valérie, Jordan, Norbert, Huittinen, Nina, Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), ANR-16-IDEX-0004,ULNE,ULNE(2016), and ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry - Abstract
International audience
- Published
- 2023
3. Complexation of Cm(III) and Eu(III) with aqueous phosphate: a combined luminescence, thermodynamic, and ab initio study
- Author
-
Jordan, Norbert, Jessat, Isabelle, Huittinen, Nina, Réal, Florent, Vallet, Valérie, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-21-CE29-0027,CHESS,Chimie, spectroscopie et spéciation du protactinium(2021), ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011), and ANR-16-IDEX-0004,ULNE,ULNE(2016)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry - Abstract
International audience
- Published
- 2023
4. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy
- Author
-
Nathalie Moncoffre, Claire Lomenech, Suzy Surblé, Nicolas Marmier, N. Toulhoat, Eric Giffaut, A Sabau, Astrid Barkleit, Vinzenz Brendler, Y. Pipon, Norbert Jordan, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Laboratoire d'Etudes des Eléments Légers (LEEL - UMR 3685), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), Université Nice Sophia Antipolis (... - 2019) (UNS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ecosystèmes Côtiers Marins et Réponses aux Stress ( ECOMERS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ), Institut de Physique Nucléaire de Lyon ( IPNL ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), CEA-Direction de l'Energie Nucléaire ( CEA-DEN ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institute of Resource Ecology [Dresden] ( IRE ), Helmholtz-Zentrum Dresden-Rossendorf ( HZDR ), Laboratoire d'Etudes des Eléments Légers ( LEEL - UMR 3685 ), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) ( NIMBE UMR 3685 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut Rayonnement Matière de Saclay ( IRAMIS ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut Rayonnement Matière de Saclay ( IRAMIS ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, and Agence Nationale pour la Gestion des Déchets Radioactifs ( ANDRA )
- Subjects
Nuclear and High Energy Physics ,Materials science ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,[ CHIM ] Chemical Sciences ,01 natural sciences ,nickel ,chemistry.chemical_compound ,Adsorption ,[CHIM]Chemical Sciences ,incorporation ,Spectroscopy ,europium ,Instrumentation ,RBS ,Calcite ,[PHYS]Physics [physics] ,[ PHYS ] Physics [physics] ,Sorption ,021001 nanoscience & nanotechnology ,Rutherford backscattering spectrometry ,Fluorescence ,0104 chemical sciences ,Nickel ,Crystallography ,chemistry ,0210 nano-technology ,Europium ,calcite ,TRLFS, sorption - Abstract
This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO3). Calcite powders or single crystals (some mm sized) have been put into contact with Eu or Ni enriched solutions. The concentrations ranged from 10−3 to 10−5 mol.L−1 for Eu and 10−3 mol.L−1 for Ni and the sorption durations ranged from one week to one month. In order to elucidate the retention mechanisms of these elements into calcite, Rutherford Backscattering Spectrometry (RBS) has been carried out. This technique is well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance). Moreover, using the fluorescence properties of Europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage have also been carried out. Results show that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.
- Published
- 2014
5. Complexation of Cm(III) with aqueous phosphates at elevated temperatures: a luminescence, thermodynamic, and ab initio study
- Author
-
Jordan, Norbert, Huittinen, Nina, Jessat, Isabelle, Réal, Florent, Vallet, Valérie, Starke, Sebastian, Eibl, Manuel, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Department of Information Services and Computing, ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011), ANR-16-IDEX-0004,ULNE,ULNE(2016), Vallet, Valérie, Physiques et Chimie de l'Environnement Atmosphérique - - Cappa2011 - ANR-11-LABX-0005 - LABX - VALID, and ULNE - - ULNE2016 - ANR-16-IDEX-0004 - IDEX - VALID
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
International audience; The incorporation of actinides in lanthanide phosphate matrices crystallizing in the monazite structure has been intensely investigated in the past decades due to the relevance of these monazites as potential ceramic host phases for the immobilization of specific high level radioactive waste (HLW) streams [1-3]. In recent years, understanding the incorporation behaviour of trivalent dopants in the LnPO4•xH2O rhabdophane structure has been given more attention [4,5]. Rhabdophane is the hydrated phosphate precursor in the synthesis of monazites through precipitation routes and a potential secondary mineral controlling actinide solubility in dissolution and re-precipitation reactions of monazite host-phases. Despite the large interest in lanthanide phosphates and the interaction of actinides with these solids, very little data [6-8] is available on the complexation of lanthanides and actinides with aqueous phosphates, even though these complexation reactions precede any aqueous synthesis of monazite ceramics and are expected to occur in natural waters as well as in the proximity of monazite-containing HLW repositories. In many cases, an independent spectroscopic validation of the stoichiometry of the proposed complexes, is also missing. Both from the perspective of aqueous rhabdophane synthesis, which is often carried out at elevated temperatures, and heat-generating HLW immobilization in monazites, the lanthanide and actinide complexation reactions with aqueous phosphates under ambient conditions should be complemented with data obtained at higher temperatures.In the present work, laser-induced luminescence spectroscopy was used to study the complexation of Cm(III) (1.15×10-8 to 1.15×10-7 M) as a function of total phosphate concentration (0 to 0.08 M) in the temperature regime 25-90 °C, using NaClO4 as a background electrolyte (I = 0.5 to 3.0 M). These studies have been conducted in the acidic pH-range (−log10 [H+] = 1.00, 2.52, 3.44, and 3.65) to avoid precipitation of solid Cm rhabdophane. For the first time, in addition to the presence of CmH2PO42+ already evidenced before [6,7], the formation of Cm(H2PO4)2+ was unambiguously established from the luminescence spectroscopic data collected at the various H+ concentrations previously mentioned [8].The conditional complexation constants of both aqueous complexes were found to increase upon rising ionic strength and temperature. Extrapolation of the obtained complexation constants to infinite dilution at 25 °C was performed by applying the Specific Ion Interaction Theory (SIT) [9]. The obtained log10 β° values for CmH2PO42+ and Cm(H2PO4)2+ were 0.45 ± 0.04 and 0.08 ± 0.07 [8], respectively, for reactions 1 and 2 below:Cm3+ + H3PO4 ⇌ CmH2PO42+ + H+ (1)Cm3+ + 2 H3PO4 ⇌ Cm(H2PO4)2+ + 2 H+ (2)The ion interaction coefficients ε(CmH2PO42+;ClO4-) = 0.17 ± 0.04 and ε(Cm(H2PO4)2+;ClO4-) = −0.10 ± 0.06 were derived at 25 °C [8]. Temperature-dependent conditional complexation constants for the identified species were obtained from the recorded luminescence emission spectra. They were subsequently extrapolated to I =0 M, assuming that the ion interaction parameters obtained at 25 °C are not significantly impacted by the temperature increase from 25 °C to 90 °C [6]. Using the integrated van´t Hoff equation, both the molar enthalpy of reaction ΔrHm° and entropy of reaction ΔrSm° values were found to be positive for the two complexes, namely CmH2PO42+ and Cm(H2PO4)2+ [8].Relativistic quantum chemical investigations revealed a monodentate binding of the H2PO4- ligand to the central Cm3+ ion to be the most stable configuration for both complexes. By combining ab initio calculations with a thorough analysis of the obtained luminescence spectroscopic data, both CmH2PO42+ and Cm(H2PO4)2+ complexes with an overall CN of 9 were shown to be stable in solution at 25 °C. However, a different temperature-dependent evolution of the coordination of the Cm3+ ion to hydration water molecules could be derived from the electronic structure of the Cm(III)-phosphate complexes. More specifically, an overall coordination number of 9 was retained for the CmH2PO42+ complex in the investigated temperature range (25 to 90 °C), while a coordination change from 9 to 8 was established for the Cm(H2PO4)2+ species with increasing temperature [8]. This change of coordination upon increasing temperature, which has not been investigated in detail in the past, might also be relevant in the complexation of other f-elements with inorganic and/or organic ligands and deserves further exploration.[1] R. C. Ewing, Proc. Natl. Acad. Sci. USA 96, 3432 (1999).[2] D. Bregiroux et al., J. Nucl. Mater. 366, 52 (2007).[3] N. Huittinen et al., J. Nucl. Mater. 486, 148 (2017). [4] E. Du Fou de Kerdaniel, J. Nucl. Mater. 362, 451 (2007).[5] N. Huittinen et al., Inorg. Chem. 57, 6252−6265 (2018).[6] H. Moll et al., Radiochim. Acta, 99, 775−782 (2011).[7] N. Jordan et al., Inorg. Chem. 57, 7015-7024 (2018).[8] N. Huittinen et al., Inorg. Chem. 60, 10656−10673 (2021).[9] I. Grenthe et al., Second update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, Paris, France, (2020).
- Published
- 2022
6. Identification of hexanuclear Actinide(IV) carboxylates with Thorium, Uranium and Neptunium by EXAFS spectroscopy
- Author
-
Werner Kraus, Stephan Weiss, Franziska Emmerling, Andreas C. Scheinost, Koichiro Takao, Shinobu Takao, Michel Meyer, Christoph Hennig, Institute of Resource Ecology [Dresden] ( IRE ), Helmholtz-Zentrum Dresden-Rossendorf ( HZDR ), European Synchrotron Radiation Facility ( ESRF ), Univ Electrocommun, Dept Engn Sci, Chofu, Tokyo 182, Japan, Seikei Univ, Dept Mat & Life Sci, Tokyo 1808633, Japan, BAM Fed Inst Mat Res & Testing, D-12489 Berlin, Germany, Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] ( ICMUB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), European Synchrotron Radiation Facility (ESRF), Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] (ICMUB), and Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,History ,[ PHYS ] Physics [physics] ,010405 organic chemistry ,Chemistry ,Neptunium ,Inorganic chemistry ,chemistry.chemical_element ,Actinide ,010402 general chemistry ,01 natural sciences ,Chemical reaction ,0104 chemical sciences ,Computer Science Applications ,Education ,Actinides ,EXAFS ,Colloid ,chemistry.chemical_compound ,Carboxylates ,Polymerization ,Solvolysis ,Carboxylate ,Solubility - Abstract
International audience; Hydrated actinide(IV) ions undergo hydrolysis and further polymerization and precipitation with increasing pH. The resulting amorphous and partly crystalline oxydydroxides AnO(n)(OH)(4-2n)center dot xH(2)O can usually be observed as colloids above the An(IV) solubility limit. The aging process of such colloids results in crystalline AnO(2). The presence of carboxylates in the solution prevents the occurrence of such colloids by formation of polynuclear complexes through a competing reaction between hydrolysis and ligation. The majority of recently described carboxylates reveals a hexanuclear core of [An(6)(mu(3)-O)(4)(mu(3)-OH)(4)](12+) terminated by 12 carboxylate ligands. We found that the An(IV) carboxylate solution species remain often preserved in crystalline state. The An(IV) carboxylates show An-An distances which are similar to 0.03 angstrom shorter than the An-An distances in AnO(2) like colloids. The difference in the distances could be used to identify such species in solution
- Published
- 2012
7. How Does Iron Storage Protein Ferritin Interact with Plutonium (and Thorium)?
- Author
-
Aurélie Jeanson, Marta Garcia Cortes, Christophe Den Auwer, Gaëlle Creff, Cyril Zurita, Satoru Tsushima, Carole Bresson, Pier Lorenzo Solari, Institut de Chimie de Nice (ICN), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire (LANIE), Service d'études analytiques et de réactivité des surfaces (SEARS), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Zentrum für Informationdienste und Hochleistungrechnen of Technische Universität Dresden, Germany, MARS beam line of SOLEIL synchrotron, Gif-sur-Yvette, France, Université Nice Sophia Antipolis (1965 - 2019) (UNS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Subjects
Absorption spectroscopy ,Iron ,Inorganic chemistry ,Infrared spectroscopy ,010402 general chemistry ,Ring (chemistry) ,01 natural sciences ,Catalysis ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Oxidation state ,Spectrophotometry ,medicine ,Animals ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Horses ,X-ray absorption spectroscopy ,biology ,medicine.diagnostic_test ,010405 organic chemistry ,Chemistry ,Thorium ,Organic Chemistry ,General Chemistry ,Actinide ,Plutonium ,0104 chemical sciences ,Ferritin ,13. Climate action ,Ferritins ,biology.protein - Abstract
International audience; The impact of the contamination of living organisms by actinide elements has been a constant subject of attention since the 1950s. But to date still little is understood. Ferritin is the major storage and regulation protein of iron in many organisms, it consists of a protein ring and a ferrihydric core at the center. This work sheds light on the interactions of early actinides (Th, Pu) at oxidation state +IV with ferritin and its ability to store those elements at physiological pH compared to Fe. The Ferritin - thorium load curve suggests that Th(IV) saturates the protein (2840 Th atoms per ferritin) in a similar way that Fe does on the protein ring. Complementary spectroscopic techniques (Spectrophotometry, Infrared Spectroscopy and X-ray Absorption Spectroscopy) were combined with Molecular Dynamics to provide a structural model of the interaction of Th(IV) and Pu(IV) with ferritin. Comparison of spectroscopic data together with MD calculations suggests that Th(IV) and Pu(IV) are complexed mainly on the protein ring and not on the ferrihydric core. Indeed from XAS data, there is no evidence of Fe neighbors in the Th and Pu environments. On the other hand, carboxylates from amino acids of the protein ring and a possible additional carbonate anion are shaping the cation coordination spheres. This thorough description from a molecular view point of Th(IV) and Pu(IV) interaction with ferritin, an essential iron storage protein, is a cornerstone in comprehensive nuclear toxicology.
- Published
- 2020
8. Role of the Hydroxo Group in the Coordination of Citric Acid to Trivalent Americium
- Author
-
Christelle Tamain, Laura Bonato, Pier Lorenzo Solari, Atsushi Ikeda-Ohno, Astrid Barkleit, Dominique Guillaumont, Thomas Dumas, Jean Aupiais, Philippe Moisy, Philippe Guilbaud, Claude Berthon, Laboratory of Interactions Ligand-Actinide (LILA), Département de recherche sur les procédés pour la mine et le recyclage du combustible (DMRC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Sonochimie dans les Fluides Complexes (LSFC), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Département RadioChimie et Procédés (DRCP), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut des Sciences et technologies pour une Economie Circulaire des énergies bas carbone (ISEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Coordination sphere ,010405 organic chemistry ,media_common.quotation_subject ,Inorganic chemistry ,chemistry.chemical_element ,Americium ,Actinide ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,3. Good health ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Inorganic Chemistry ,chemistry.chemical_compound ,Speciation ,chemistry ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Group (periodic table) ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Citric acid ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,ComputingMilieux_MISCELLANEOUS ,media_common - Abstract
International audience
- Published
- 2020
9. Size Dependence of lattice parameter and electronic structure in CeO2 nanoparticles
- Author
-
Philippe Martin, Kristina O. Kvashnina, Thomas Gouder, A. Beck, Rachel Eloirdi, Andreas C. Scheinost, Walter Bonani, Kyle W. Kriegsman, Damien Prieur, Olaf Walter, Xiaofeng Guo, Karin Popa, Tonya Vitova, Mark H. Engelhard, European Synchroton Radiation Facility [Grenoble] (ESRF), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), European Commission - Joint Research Centre [Karlsruhe] (JRC), Washington State University (WSU), William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), Institute of Resource Ecology [Dresden] (IRE), Département de recherche sur les procédés pour la mine et le recyclage du combustible (DMRC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Chemical Physics (physics.chem-ph) ,010405 organic chemistry ,Chemistry ,FOS: Physical sciences ,Electronic structure ,Crystal structure ,HEFRD-XANES ,010402 general chemistry ,01 natural sciences ,XANES ,0104 chemical sciences ,Inorganic Chemistry ,Crystal ,Condensed Matter::Materials Science ,Lattice constant ,Electronic Structure ,X-ray photoelectron spectroscopy ,Lanthanide ,Chemical physics ,Physics - Chemical Physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Physical and Theoretical Chemistry ,Fourier transform infrared spectroscopy ,Spectroscopy ,CeO2 - Abstract
Intrinsic properties of a compound (e.g., electronic structure, crystallographic structure, optical and magnetic properties) define notably its chemical and physical behavior. In the case of nanomaterials, these fundamental properties depend on the occurrence of quantum mechanical size effects and on the considerable increase of the surface to bulk ratio. Here, we explore the size dependence of both crystal and electronic properties of CeO2 nanoparticles (NPs) with different sizes by state-of-the art spectroscopic techniques. X-ray diffraction, X-ray photoelectron spectroscopy, and high-energy resolution fluorescence-detection hard X-ray absorption near-edge structure (HERFD-XANES) spectroscopy demonstrate that the as-synthesized NPs crystallize in the fluorite structure and they are predominantly composed of CeIV ions. The strong dependence of the lattice parameter with the NPs size was attributed to the presence of adsorbed species at the NPs surface thanks to Fourier transform infrared spectroscopy and thermogravimetric analysis measurements. In addition, the size dependence of the t2g states in the Ce LIII XANES spectra was experimentally observed by HERFD-XANES and confirmed by theoretical calculations., Comment: Inorganic Chemistry (2020)
- Published
- 2020
10. Complexation of Cm(III) with aqueous phosphates at elevated temperatures
- Author
-
Jordan, Norbert, Huittinen, Nina, Jessat, Isabelle, Réal, Florent, Vallet, Valérie, Starke, Sebastian, Eibl, Manuel, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Department of Information Services and Computing
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
International audience; Thermodynamic databases are essential for the safety assessments of radioactive waste repositories. They have to be reliable, comprehensive, and describe the key mechanisms controlling the mobility of contaminants in the environment. However, in many cases these prerequisites are not fulfilled. An important example is the complexation of actinides with aqueous phosphates, for which this work provides complexation constants for spectroscopically identified species at 25 °C and at elevated temperature.The complexation of Cm(III) was studied at sub micromolar concentrations by laser induced luminescence spectroscopy as a function of total phosphate concentration (0-0.06 M ΣPO4) in the temperature range 25-90°C, using NaClO4 as a background electrolyte at –log[H+] ranging from from 2.5 to 3.6. The formation of both CmH2PO42+ and Cm(H2PO4)2+ complexes was revealed, the latter being spectroscopically evidenced for the first time. Complexation constants were found to increase when raising the ionic strength from 0.5 to 3.0 M.Temperature-dependent (25 to 90 °C) complexation constants for the identified species were derived, and were recalculated to standard conditions with the van´t Hoff equation and the Specific Ion Interaction Theory. Endothermic and entropy driven reactions were established for both complexes. In addition, relativistic quantum chemical investigations were performed to study the complexation strength of Cm(III) with aqueous phosphates and to provide insight in potential changes of the coordination number with increasing temperature and to probe the character of the Cm water and Cm phosphate bonds.
- Published
- 2021
11. Revisiting the complexation of Cm(III) with aqueous phosphates: what can we learn from the complex structures using luminescence spectroscopy and ab initio simulations?
- Author
-
Manuel Eibl, Florent Réal, Sebastian Starke, Isabelle Jessat, Valérie Vallet, Nina Huittinen, Norbert Jordan, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Department of Information Services and Computing, German Federal Ministry of Education and Research (BMBF), Project No. 02NUK039B (ThermAc) and 033R127D (SEM2), Ministry of Higher Education and Research, Hauts de France Council and European Regional Development Fund (ERDF) through the Contrat de Projets État–RÉgion (CPER–CLIMIBIO), French research network GDR 2035 SolvATE, HPC resources of [CINES/IDRIS/TGCC] under the allocation 2019–2020 [A0070801859] made by GENCI, ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011), and ANR-16-IDEX-0004,ULNE,ULNE(2016)
- Subjects
chemistry.chemical_classification ,Aqueous solution ,010405 organic chemistry ,Chemistry ,Ligand ,ab initio ,Coordination number ,complexation ,Enthalpy ,Ab initio ,temperature ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Coordination complex ,Inorganic Chemistry ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Specific ion interaction theory ,luminescence ,Physical chemistry ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,Luminescence ,Cm(III) ,phosphate - Abstract
International audience; The coordination chemistry of Cm(III) with aqueous phosphates was investigated by means of laser-induced luminescence spectroscopy and ab initio simulations. For the first time, in addition to the presence of Cm(H2PO4)2+, the formation of Cm(H2PO4)2+ was unambiguously established from the luminescence spectroscopic data collected at various H+ concentrations (−log10 [H+] = 2.52, 3.44, and 3.65), ionic strengths (0.5–3.0 mol·L-1 NaClO4), and temperatures (25–90 °C). Complexation constants for both species were derived and extrapolated to standard conditions using the specific ion interaction theory. The molal enthalpy ΔRHm0 and molal entropy ΔRSm0 of both complexation reactions were derived using the integrated van’t Hoff equation and indicated an endothermic and entropy-driven complexation. For the Cm(H2PO4)2+ complex, a more satisfactory description could be obtained when including the molal heat capacity term. While monodentate binding of the H2PO4- ligand(s) to the central curium ion was found to be the most stable configuration for both complexes in our ab initio simulations and luminescence lifetime analyses, a different temperature-dependent coordination to hydration water molecules could be deduced from the electronic structure of the Cm(III)–phosphate complexes. More precisely, where the Cm(H2PO4)2+ complex could be shown to retain an overall coordination number of 9 over the entire investigated temperature range, a coordination change from 9 to 8 was established for the Cm(H2PO4)2+ species with increasing temperature.
- Published
- 2021
12. Complexation of Cm(III) with aqueous phosphates at elevated temperatures
- Author
-
Jordan, Norbert, Jessat, Jenny, Réal, Florent, Vallet, Valérie, Starke, Sebastian, Huittinen, Nina, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Department of Information Services and Computing
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
International audience; Thermodynamic databases are essential for the safety assessments of radioactive waste repositories. They have to be reliable, comprehensive, and describe the key mechanisms controlling the mobility of contaminants in the environment. However, in many cases these prerequisites are not fulfilled. An important example is the complexation of actinides with aqueous phosphates, for which this work provides complexation constants for spectroscopically identified species at 25 °C and at elevated temperature.The complexation of Cm(III) was studied at sub micromolar concentrations by laser induced luminescence spectroscopy as a function of total phosphate concentration (0-0.06 M ΣPO4) in the temperature range 25-90°C, using NaClO4 as a background electrolyte at –log[H+] ranging from from 2.5 to 3.6. The formation of both CmH2PO42+ and Cm(H2PO4)2+ complexes was revealed, the latter being spectroscopically evidenced for the first time. Complexation constants were found to increase when raising the ionic strength from 0.5 to 3.0 M.Temperature-dependent (25 to 90 °C) complexation constants for the identified species were derived, and were recalculated to standard conditions with the van´t Hoff equation and the Specific Ion Interaction Theory. Endothermic and entropy driven reactions were established for both complexes. Eventually, relativistic quantum chemical investigations were performed to study the complexation strength of Cm(III) with aqueous phosphates and to provide insight in potential changes of the coordination number with increasing temperature and to probe the character of the Cm water and Cm phosphate bonds.
- Published
- 2020
13. Peculiar Thermal Behavior of UO2 Local Stucture
- Author
-
Christoph Hennig, Kathy Dardenne, Daniel R. Neuville, E. Epifano, Damien Prieur, Joerg Rothe, Andreas C. Scheinost, Philippe Martin, Institute of Resource Ecology, Institute of Radiochemistry, CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institute for Nuclear Waste Disposal, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology [Dresden], and CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
- Subjects
Diffraction ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,SAX ,Lattice vibration ,02 engineering and technology ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,010402 general chemistry ,01 natural sciences ,Fluorite ,law.invention ,uranium ,Inorganic Chemistry ,law ,Thermal ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Condensed matter physics ,Chemistry ,Anharmonicity ,in situ ,021001 nanoscience & nanotechnology ,Synchrotron ,0104 chemical sciences ,Bond length ,Thermal shrinkage ,oxide ,0210 nano-technology ,fuel - Abstract
Most materials expand with temperature because of the anharmonicity of lattice vibration, and only a few shrink with increasing temperature. UO2, whose thermal properties are of significant importance for the safe use of nuclear energy, was considered for a long time to belong to the first group. This view was challenged by recent in situ synchrotron X-ray diffraction measurements, showing an unusual thermal decrease of the U–O distances. This thermal shrinkage was interpreted as a consequence of the splitting of the U–O distances due to a change in the U local order from Fm3m to Pa3. In contrast to these previous investigations and using an element-specific synchrotron-based spectroscopic method, we show here that the U sublattice remains locally of the fluorite type from 50 to 1265 K, and that the decrease of the first U–O bond lengths is associated with an increase of the disorder.
- Published
- 2018
14. {Np38} clusters: the missing link in the largest poly-oxo cluster series of tetravalent actinides
- Author
-
Juliane März, Christophe Volkringer, Christoph Hennig, Nicolas P. Martin, Thierry Loiseau, Pascal Roussel, Atsushi Ikeda-Ohno, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille
- Subjects
Series (mathematics) ,010405 organic chemistry ,Neptunium ,Solvothermal synthesis ,Metals and Alloys ,chemistry.chemical_element ,General Chemistry ,Link (geometry) ,Actinide ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,3. Good health ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Crystallography ,chemistry ,Materials Chemistry ,Ceramics and Composites ,Cluster (physics) ,ComputingMilieux_MISCELLANEOUS ,Tetrahydrofuran - Abstract
Two poly-oxo cluster complexes of tetravalent neptunium (Np(iv)), Np38O56Cl18(bz)24(THF)8·nTHF and Np38O56Cl42(ipa)20·mipa (bz = benzoate, THF = tetrahydrofuran, and ipa = isopropanol), were obtained via solvothermal synthesis and structurally characterised by single-crystal X-ray diffraction. The {Np38} clusters are comparable to the analogous {U38} and {Pu38} motifs, filling the gap in this largest poly-oxo cluster series of tetravalent actinides.
- Published
- 2018
15. A Combined Spectroscopic/Molecular Dynamic Study for Investigating a Methyl-Carboxylated PEI as a Potential Uranium Decorporation Agent
- Author
-
Marisol Janeth Lozano Rodriguez, Magali Duvail, Florian Lahrouch, Anne Christine Chamayou, Christophe Den Auwer, Gaëlle Creff, Christoph Hennig, Christophe Di Giorgio, Institut de Chimie de Nice (ICN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Modélisation Mésoscopique et Chimie Théorique (LMCT), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Synchrotron Radiation Facility (ESRF), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polyethylenimine ,chemistry.chemical_element ,02 engineering and technology ,Enhanced permeability and retention effect ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Natural uranium ,Uranium ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Uranyl ,01 natural sciences ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Inorganic Chemistry ,chemistry.chemical_compound ,chemistry ,Chelation ,Carboxylate ,Physical and Theoretical Chemistry ,0210 nano-technology ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,Macromolecule ,Nuclear chemistry - Abstract
International audience; Natural uranium has a very limited radioactive dose impact, but its chemical toxicity due to chronic exposure is still a matter of debate. Once inside the human body, the soluble uranium, under its uranyl form (U(VI)), is quickly removed from the blood system, partially excreted from the body, and partially retained in targeted organs, that is, the kidneys and bone matrix essentially. It is then crucial to remove or prevent the incorporation of uranium in these organs to limit the long-term chronic exposure. A lot of small chelating agents such as aminocarboxylates, catecholamides, and hydroxypyridonates have been developed so far. However, they suffer from poor selectivity and targeting abilities. Macromolecules and polymers are known to present a passive accumulation (size related), that is, the so-called enhanced permeability and retention effect, toward the main organs, which can be used as indirect targeting. Very interestingly, the methyl carboxylated polyethylenimine (PEI-MC) derivative has been described as a potent sequestering agent for heavy metals. It would be therefore an interesting candidate to evaluate as a new class of decorporation agents with passive targeting capabilities matching uranium preferential sequestering sites. In the present work, we explored the ability of a highly functionalized (89% rate) PEI-MC to uptake U(VI) close to physiological pH using a combination of analytical and spectroscopic techniques (inductively coupled plasma optical emission spectrometry (ICP-OES); extended X-ray absorption fine structure (EXAFS); and Fourier transformed infrared (FT-IR)) together with molecular dynamics (MD) simulation. A maximum loading of 0.47 mg U(VI) per milligram of PEI-MC was determined by ICP-OES measurements. From FT-IR data, a majority of monodentate coordination of the carboxylate functions of the PEI-MC seems to occur. From EXAFS and MD, a mix of mono and bidentate coordination mode was observed. Note that agreement between the EXAFS metrical parameters and MD radial distribution functions is remarkable. To the best of our knowledge, this is the first comprehensive structural study of a macromolecular PEI-based agent considered for uranium decorporation purposes.
- Published
- 2017
16. Hard X-ray photon-in photon-out spectroscopy as a probe of the temperature-induced delocalization of electrons in nanoscale semiconductors
- Author
-
Christoph Willa, Ofer Hirsch, Kristina O. Kvashnina, Dorota Koziej, Swiss Fed Inst Technol, Dept Mat, Lab Multifunct Mat, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and European Synchrotron Radiation Facility (ESRF)
- Subjects
[PHYS]Physics [physics] ,Materials science ,Condensed matter physics ,business.industry ,General Chemical Engineering ,02 engineering and technology ,General Chemistry ,Electron ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,XANES ,0104 chemical sciences ,Ion ,Delocalized electron ,Semiconductor ,Electrical resistance and conductance ,Materials Chemistry ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) ,Spectroscopy - Abstract
Hard X-ray photon-in photon-out spectroscopy has so far mainly been applied to investigate fundamental physical phenomena in superconductors and chemical reactivity of bioinorganic, photocatalytic, and catalytic materials. Here, we show, with the example of Pr6O11 nanoparticles, an n-type semiconductor, how high-energy resolution fluorescence detected (HERFD) X-ray absorption near edge structure (XANES) can be used to track the changes of partially filled f-bands. We observe a reversible variation of the spectral features related to the tetravalent Pr ions upon heating and cooling, whereas structural and chemical transformations can be excluded. We assign these changes to the occupancy of the O 2p–Pr 4f band and show that they directly relate to changes in the electrical conductance. Our results demonstrate how HERFD-XANES can be used to particularly study in situ the electronic properties of f-electrons in a semiconductor and how this method can be further extended to other classes of semiconducting nanomaterials., Chemistry of Materials, 29 (4), ISSN:0897-4756
- Published
- 2017
17. Bi(<scp>iii</scp>) immobilization inside MIL-101: enhanced photocatalytic performance
- Author
-
Vladimir P. Fedin, Natalia V. Ruban, Kristina O. Kvashnina, S. V. Trubina, Denis V. Korneev, Konstantin A. Kovalenko, S.B. Erenburg, Maxim N. Sokolov, Sergey A. Adonin, Novosibirsk State Univ, 2 Pirogova St, Novosibirsk 630090, Russia, RAS, Nikolaev Inst Inorgan Chem, SB, 3 Akad Lavrentiev Ave, Novosibirsk 630090, Russia, State Res Ctr Virol & Biotechnol Vector, Koltsov 630559, Novosibirsk Reg, Russia, Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences (SB RAS), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), European Synchrotron Radiation Facility (ESRF), and Kazan Fed Univ, Alexander Butlerov Inst Chem, Lobachevskogo St 1-29, Kazan 420008, Russia
- Subjects
chemistry.chemical_element ,Nanotechnology ,Sorption ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Bismuth ,chemistry.chemical_compound ,Chromium ,chemistry ,Methyl red ,Materials Chemistry ,Photocatalysis ,[CHIM]Chemical Sciences ,0210 nano-technology ,Photodegradation ,Hybrid material ,Nuclear chemistry - Abstract
International audience; A novel hybrid material Bi(III)@MIL-101 (Bi(III) = Bi-containing oxoclusters and MIL-101 = chromium(III) oxoterephthalate) was obtained by the intra-pore hydrolysis of guest bismuth(III) chloride in ammonia solution. This compound was characterized by chemical analysis, powder X-ray diffraction, nitrogen sorption and TEM techniques. According to the obtained data all Bi species are located only inside the matrix. The framework structure remains intact during all synthetic operations. The chemical nature of Bi(III)-containing clusters inside the MIL-101 matrix was suggested based on the EXAFS study. The catalytic activity of Bi(III)@MIL-101 in photodegradation of methyl red (MR) has been tested. The introduction of Bi(III)-species inside MIL-101 significantly increases the photocatalytic performance in comparison with layered BiOCl which was obtained under the same synthetic conditions without MIL-101
- Published
- 2017
18. Deciphering the Crystal Structure of a Scarce 1D Polymeric Thorium Peroxo Sulfate
- Author
-
Laura Bonato, Pierre Lecante, Sergey I. Nikitenko, Nicolas Dacheux, Thomas Dumas, Adel Mesbah, Philippe Moisy, Matthieu Virot, Damien Prieur, Xavier F. Le Goff, Christoph Hennig, Sonochimie dans les Fluides Complexes (LSFC), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM), Département de recherche sur les procédés pour la mine et le recyclage du combustible (DMRC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Interfaces de Matériaux en Evolution (LIME), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), JRC Institute for Transuranium Elements [Karlsruhe] (ITU ), European Commission - Joint Research Centre [Karlsruhe] (JRC), Etude de la Matière en Mode Environnemental (L2ME), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Service de Chimie des Procédés de Séparation (SCPS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Subjects
010405 organic chemistry ,Ligand ,Organic Chemistry ,Thorium ,chemistry.chemical_element ,General Chemistry ,Crystal structure ,Structure type ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Peroxide ,Catalysis ,Synchrotron ,0104 chemical sciences ,law.invention ,chemistry.chemical_compound ,Crystallography ,chemistry ,law ,[CHIM.CRIS]Chemical Sciences/Cristallography ,[CHIM]Chemical Sciences ,Orthorhombic crystal system ,Sulfate ,[CHIM.RADIO]Chemical Sciences/Radiochemistry - Abstract
International audience; The preparation and structural characterization of an original Th peroxo sulfate dihydrate, crystallizing at room temperature in the form of stable 1D polymeric microfibres is described. A combination of laboratory and synchrotron techniques allowed solution of the structure of the Th(O2)(SO4)(H2O)2 compound, which crystallizes in a new structure type in the space group Pna21 of the orthorhombic crystal system. Particularly, the peroxide ligand coordinates to the Th cations in an unusual μ3‐η2:η2:η2 bridging mode, forming an infinite 1D chain decorated with sulfato ligands exhibiting simultaneously monodentate and bidentate coordination modes.
- Published
- 2019
19. Impact of temperature on the complexation of Eu(III) and Cm(III) with aqueous phosphates
- Author
-
Jordan, Norbert, Huittinen, Nina, Jessat, Isabelle, Réal, Florent, Vallet, Valérie, Starke, Sebastian, Demnitz, Maximilian, Lösch, Henry, Brendler, Vinzenz, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Department of Information Services and Computing
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Luminescence spectroscopy ,SIT ,Lanthanide ,Complexation ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,ComputingMilieux_MISCELLANEOUS ,Actinide - Abstract
The incorporation of actinides in solid lanthanide phosphates crystallizing in the monazite structure has been intensely investigated in the past decades due to the relevance of these monazites as potential ceramic phases for the immobilization of specific high level radioactive waste (HLW) streams [1-3]. In recent years, understanding the incorporation behaviour of trivalent dopants in the LnPO4×nH2O rhabdophane structure, which is the hydrated phosphate precursor in the synthesis of monazites through precipitation routes and a potential secondary mineral controlling actinide solubility in dissolution and re-precipitation reactions of monazite host-phases, has been given more attention [4,5]. Despite the large interest in lanthanide phosphates and the interaction of actinides with these solids, very little data is available on the complexation of lanthanides and actinides with aqueous phosphates, even though these complexation reactions precede any aqueous synthesis of monazite ceramics and are expected to occur in natural waters as well as in the proximity of monazite-containing HLW repositories. It also suffers from an almost systematic absence of independent spectroscopic validation of the stoichiometry of the proposed complexes. Both from the perspective of aqueous rhabdophane synthesis, which is often carried out at elevated temperatures, and heat-generating HLW immobilization in monazites, the lanthanide and actinide complexation reactions with aqueous phosphates under ambient conditions should be complemented with data obtained at higher temperatures. In the present work, laser-induced luminescence spectroscopy (LIL) was used to study the complexation of Eu(III) (5×10 6 M) and Cm(III) (5×10 7 or 1×10 8 M) as a function of total phosphate concentration (0-0.3 M ΣPO4) in the temperature regime 25-90°C, using NaClO4 as a background electrolyte (I = 0.5 to 3.1 M). These studies have, in a first step, been conducted in the acidic pH-range (pH = 1) to avoid precipitation of solid Eu or Cm rhabdophane. Both trivalent metal cations form a complex with the anionic H2PO4 species, i.e. EuH2PO42+ and CmH2PO42+. The conditional complexation constants were found to increase upon rising ionic strength and temperature. Extrapolation of the obtained complexation constants to infinite dilution at 25 °C was performed by applying the Specific Ion Interaction Theory (SIT) [6]. The obtained log β° values for EuH2PO42+ and CmH2PO42 were 0.89 ± 0.13 and 0.45 ± 0.19, respectively, for reaction 1 below: Me3+ + H3PO4 ⇌ MeH2PO42+ + H+ (Me = Eu or Cm) (1) The ion-ion interaction coefficients ε(EuH2PO42+;ClO4 ) = 0.20 ± 0.08 and ε(CmH2PO42+;ClO4 ) = 0.16 ± 0.12 were derived at 25 °C. Temperature-dependent conditional complexation constants for the identified species were obtained from the recorded luminescence emission spectra. They were subsequently extrapolated to I =0 M, assuming that the ion-ion interaction parameters obtained at 25 °C are not significantly impacted by the temperature increase from 25 °C to 90 °C [6]. Using the extended van´t Hoff equation, the molal enthalpy ΔRHm° and entropy of reaction ΔRSm° values were both found to be positive. Exactly the same combination of batch, spectroscopic, and thermodynamic studies was used at lower H+ concentrations ( log[H+] = 2.52, 3.44, and 3.65). Our results clearly showed the presence of Eu(H2PO4)2+ and Cm(H2PO4)2+ species, so far never reported in the literature. In addition Eu(HPO4)+ and Cm(HPO4)+ species were identified. Conditional complexation constants for these species will be derived and extrapolated to infinite dilution using the SIT approach. Finally, relativistic quantum chemical investigations will be performed to shed light on the observed differences in the complexation strength of Eu(III) and Cm(III) with aqueous phosphates. They will also provide insight on the role of spin-orbit coupling and serve to probe the character of the metal water and metal phosphate bonds.
- Published
- 2019
20. Extreme multi-valence states in mixed actinide oxides
- Author
-
Tonya Vitova, R.J.M. Konings, Andreas C. Scheinost, Damien Prieur, J. Rothe, Mohamed Naji, Christoph Hennig, Dario Manara, Christine Guéneau, Kathy Dardenne, Jacques Lechelle, Philippe Martin, E. Epifano, CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Commission - Joint Research Centre [Karlsruhe] (JRC), Institute of Resource Ecology, Institute of Radiochemistry, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), LEM, UMR 104 CNRS-ONERA, Université Paris Saclay (COmUE) [Châtillon], ONERA-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), and Institute of Resource Ecology [Dresden]
- Subjects
Technology ,Materials science ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,XAS ,XRD ,chemistry.chemical_element ,Ionic bonding ,02 engineering and technology ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Biochemistry ,Oxygen ,Fluorite ,uranium ,americium ,lcsh:Chemistry ,symbols.namesake ,fluorite ,Materials Chemistry ,Environmental Chemistry ,structure ,oxidation state ,Raman ,ComputingMilieux_MISCELLANEOUS ,X-ray absorption spectroscopy ,Valence (chemistry) ,Americium ,General Chemistry ,Actinide ,021001 nanoscience & nanotechnology ,mixed oxide ,transmutation ,XANES ,0104 chemical sciences ,EXAFS ,chemistry ,lcsh:QD1-999 ,13. Climate action ,Chemical physics ,symbols ,Mixed oxide ,nuclear fuel ,Uranium ,0210 nano-technology ,Raman spectroscopy ,ddc:600 ,fuel - Abstract
To assure the safety of oxide-fuel based nuclear reactors, the knowledge of the atomic-scale properties of U1−yMyO2±x materials is essential. These compounds show complex chemical properties, originating from the fact that actinides and rare earths may occur with different oxidation states. In these mostly ionic materials, aliovalent cationic configurations can induce changes in the oxygen stoichiometry, with dramatic effects on the properties of the fuel. First studies on U1−yAmyO2±x indicated that these materials exhibit particularly complex electronic and local-structure configurations. Here we present an in-depth study of these compounds, over a wide compositional domain, by combining XRD, XAS and Raman spectroscopy. We provide evidences of the co-existence of four different cations (U4+, U5+, Am3+, Am4+) in U1−yMyO2±x compounds, which nevertheless maintain the fluorite structure. Indeed, we show that the cationic sublattice is basically unaffected by the extreme multi-valence states, whereas complex defects are present in the oxygen sublattice.
- Published
- 2019
21. Evidence of the negative thermal expansion of the UO2.00 fluorite local structure
- Author
-
Martin, P., Prieur, D., Epifano, E., Dardenne, K., Rothe, J., Hennig, C., Scheinost a C, S., Neuville, D., CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institute of Resource Ecology [Dresden], Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Institute of Resource Ecology [Dresden] (IRE), and CADARACHE, Bibliothèque
- Subjects
[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th] ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex] ,thermal contraction ,XAFS ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,UO2 - Abstract
International audience; The thermal properties of uranium dioxide UO2 are of significant importance in view of a safe use of the nuclear energy. Up to now, UO2 is considered to crystallize in a fluorite structure (space group Fm-3m) from room temperature to the melting temperature (3147 ± 20 K), in which both interatomic distances and lattice parameters expand with temperature. Recent in situ synchrotron X-ray diffraction measurements have tackled these literature results as an unusual thermal shrinkage of the U-O distances up to the melting point was recently observed [1]. It was confirmed by neutron pair distribution function results and interpreted as a consequence of the splitting of the U-O distances due to a change in the U local symmetry from Fm-3m to Pa-3 above 300 K [2]. In contrast to these previous investigations, we used an element-specific synchrotron-based spectroscopic method (X-Ray Absorption Spectroscopy) to probe in situ the uranium local environment in UO2.00 sintered pellet sample from 50 to 1265 K under controlled atmosphere. In this whole temperature range, the U sublattice remains locally in the fluorite. Whereas, results collected in Ar-4% H2 atmosphere at 298, 805, 1090 and 1265 K using a dedicated furnace, shown a decrease in the first U-O bond lengths with increasing temperature. The direct determinations of U oxidation state during the measurements show that neither reduction nor oxidation of the UO2.00 sample occurred ensuring that the acquired data really refer to a stoichiometric compound. Furthermore, an increase in the local disorder is observed with increasing temperature what phenomenon was modelled using the Einstein model. These findings are of significant importance in order to understand and predict the thermal behaviour of UO2 nuclear fuel.
- Published
- 2018
22. Synthesis of Coordination Polymers of Tetravalent Actinides (Uranium and Neptunium) with a Phthalate or Mellitate Ligand in an Aqueous Medium
- Author
-
Natacha Henry, Christophe Volkringer, Thierry Loiseau, Juliane März, Nicolas P. Martin, Atsushi Ikeda-Ohno, Christoph Hennig, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), and Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,010405 organic chemistry ,Ligand ,Neptunium ,Inorganic chemistry ,Phthalate ,chemistry.chemical_element ,Polymer ,Actinide ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Chloride ,0104 chemical sciences ,Square antiprism ,Inorganic Chemistry ,chemistry.chemical_compound ,Crystallography ,chemistry ,medicine ,[CHIM]Chemical Sciences ,Molecule ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,medicine.drug - Abstract
Four metal–organic coordination polymers bearing uranium or neptunium have been hydrothermally synthesized from a tetravalent actinide chloride (AnCl4) and phthalic (1,2-H2bdc) or mellitic (H6mel) acid in aqueous media at 130 °C. With the phthalate ligand, two analogous assemblies ([AnO(H2O)(1,2-bdc)]2·H2O; An = U4+ (1) or Np4+ (2)) have been isolated, in which the square-antiprismatic polyhedra of AnO8 are linked to each other via μ3-oxo groups with an edge-sharing mode to materialize infinite zigzag ribbons. The phthalate molecules play a role in connecting the adjacent zigzag chains to build a two-dimensional (2D) network. Water molecules are bonded to the actinide center or found intercalated between the layers. With the mellitate ligand, two distinct structures have been identified. The uranium-based compound [U2(OH)2(H2O)2(mel)] (3) exhibits a three-dimensional (3D) structure composed of the dinuclear units of UO8 polyhedra (square antiprism), which are further linked via the μ2-hydroxo groups. The ...
- Published
- 2017
23. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars
- Author
-
A. Ulbricht, Bertrand Radiguet, E. Oñorbe, C. Heintze, Auriane Etienne, M. Hernández-Mayoral, Frank Bergner, Dimitri Litvinov, Ankur Chauhan, Jarir Aktaa, Y. de Carlan, Institute for Applied Materials - [Karlsruhe], Karlsruhe Institute of Technology (KIT), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas [Madrid] (CIEMAT), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Nuclear and High Energy Physics ,Materials science ,Alloy ,02 engineering and technology ,Atom probe ,engineering.material ,Neutron scattering ,ODS steel ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,Strengthening mechanisms of materials ,010302 applied physics ,Strengthening mechanisms ,SANS ,Metallurgy ,021001 nanoscience & nanotechnology ,Microstructure ,Grain size ,Nuclear Energy and Engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,engineering ,TEM ,APT ,Dislocation ,0210 nano-technology ,Electron backscatter diffraction - Abstract
The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.
- Published
- 2017
24. Impact of synthetic routes on the structural and physical properties of butyl-1,4-diammonium lead iodide semiconductors
- Author
-
Safdari, Majid, Phuyal, Dibya, Philippe, Bertrand, Svensson, Per H., Butorin, Sergei, Kvashnina, Kristina O., Rensmo, Håkan, Kloo, Lars, Gardner, James M., KTH Royal Inst Technol, Dept Chem, Appl Phys Chem, SE-10044 Stockholm, Sweden, Department of Physics and Astronomy [Uppsala], Uppsala University, SP Proc Dev, Sodertalje, Sweden, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Materials Chemistry ,[CHIM]Chemical Sciences ,Materialkemi - Abstract
International audience; We report the significant role of synthetic routes and the importance of solvents in the synthesis of organic-inorganic lead iodide materials. Through one route, the intercalation of dimethylformamide in the crystal structure was observed leading to a one-dimensional (1D) [NH3(CH2)(4)NH3]Pb2I6 structure of the product. This product was compared with the two-dimensional (2D) [NH3(CH2)(4)NH3]PbI4 recovered from aqueous solvent based synthesis with the same precursors. UV-visible absorption spectroscopy showed a red-shift of 0.1 eV for the band gap of the 1D network in relation to the 2D system. This shift primarily originates from a shift in the valence band edge as determined from photoelectron-and X-ray spectroscopy results. These findings also suggest the iodide 5p orbital as the principal component in the density of states in the valence band edge. Single crystal data show a change in the local coordination around iodide, while in both materials, lead atoms are surrounded by iodide atoms in octahedral units. The conductivity of the one-dimensional material ([NH3(CH2)(4)NH3]Pb2I6) was 50% of the two-d(i)mensional material ([NH3(CH2)(4)NH3]PbI4). The fabricated solar cells reflect these changes in the chemical and electronic structure of both materials, although the total light conversion efficiencies of solar cells based on both products were similar
- Published
- 2017
25. Evidence of Trivalent Am Substitution into U 3 O 8
- Author
-
Christophe Den Auwer, André Ayral, Thibaud Delahaye, Christoph Hennig, Pascal Roussel, Andreas C. Scheinost, Sébastien Picart, Marie Caisso, CEA Marcoule, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille, Institut de Chimie de Nice (ICN), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Fission products ,Radiochemistry ,Inorganic chemistry ,Oxide ,chemistry.chemical_element ,Americium ,02 engineering and technology ,Actinide ,Uranium ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Spent nuclear fuel ,Plutonium ,Inorganic Chemistry ,chemistry.chemical_compound ,chemistry ,0103 physical sciences ,Uranium oxide ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
International audience; U3O8 is considered to be the most stable phase for uranium oxide. Its structural properties must be accurately understood to foresee and manage aspects such as its leaching behavior when spent nuclear fuel is stored in an oxidative environment. Moreover, as fuel irradiation causes the formation of fission products and activation products such as plutonium and minor actinides, it is probable that U3O8 will be mixed with other chemical elements under real conditions of oxidation. The storage issue can be extended to americium transmutation, where the irradiated compounds are mixed oxides composed of uranium and americium. This study thus focused on determining the structural properties of a solid solution containing uranium and trivalent americium (U/Am ratio = 90/10) and synthesized so as to obtain conventional U3O8 oxide. This paper presents the possibility of combining trivalent americium with uranium in a U3O8 mixed oxide for the first time, despite the high valence and atomic ratio differences, and proposes novel structural arrangements. X-ray diffraction measurements reveal americium substitution in U3O8 uranium cationic sites, leading to phase transformation into a U3O8 high-temperature structure and general lattice swelling. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure experiments highlight an excess of U+VI organized in uranyl units as the main consequence of accommodation.
- Published
- 2016
26. Emergence of Comparable Covalency in Isostructural Cerium(IV)- and Uranium(IV)-Carbon Multiple Bonds
- Author
-
Eric J. L. McInnes, Christoph Hennig, Matthew Gregson, Floriana Tuna, Andrew Kerridge, Stephen T. Liddle, Jonathan McMaster, Andreas C. Scheinost, Alexander J. Blake, Erli Lu, William Lewis, School of Chemistry [Manchester], University of Manchester [Manchester], Univ Manchester, EPSRC Natl UK EPR Facil, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England, Univ Manchester, Photon Sci Inst, Oxford Rd, Manchester M13 9PL, Lancs, England, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), European Synchrotron Radiation Facility (ESRF), University of Nottingham, UK (UON), and Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
- Subjects
inorganic chemicals ,Inorganic chemistry ,chemistry.chemical_element ,Ionic bonding ,010402 general chemistry ,bonding ,01 natural sciences ,complex mixtures ,law.invention ,chemistry.chemical_compound ,law ,Oxidation state ,[CHIM]Chemical Sciences ,Isostructural ,Electron paramagnetic resonance ,010405 organic chemistry ,technology, industry, and agriculture ,General Chemistry ,XANES ,0104 chemical sciences ,Specific orbital energy ,cerium ,Cerium ,Crystallography ,Chemistry ,chemistry ,Covalent bond ,covalency ,Carbene - Abstract
Against expectations the covalency in a cerium(iv)–carbon multiple bond interaction is essentially as covalent as the uranium(iv) analogue., We report comparable levels of covalency in cerium– and uranium–carbon multiple bonds in the iso-structural carbene complexes [M(BIPMTMS)(ODipp)2] [M = Ce (1), U (2), Th (3); BIPMTMS = C(PPh2NSiMe3)2; Dipp = C6H3-2,6-iPr2] whereas for M = Th the M 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C bond interaction is much more ionic. On the basis of single crystal X-ray diffraction, NMR, IR, EPR, and XANES spectroscopies, and SQUID magnetometry complexes 1–3 are confirmed formally as bona fide metal(iv) complexes. In order to avoid the deficiencies of orbital-based theoretical analysis approaches we probed the bonding of 1–3via analysis of RASSCF- and CASSCF-derived densities that explicitly treats the orbital energy near-degeneracy and overlap contributions to covalency. For these complexes similar levels of covalency are found for cerium(iv) and uranium(iv), whereas thorium(iv) is found to be more ionic, and this trend is independently found in all computational methods employed. The computationally determined trends in covalency of these systems of Ce ∼ U > Th are also reproduced in experimental exchange reactions of 1–3 with MCl4 salts where 1 and 2 do not exchange with ThCl4, but 3 does exchange with MCl4 (M = Ce, U) and 1 and 2 react with UCl4 and CeCl4, respectively, to establish equilibria. This study therefore provides complementary theoretical and experimental evidence that contrasts to the accepted description that generally lanthanide–ligand bonding in non-zero oxidation state complexes is overwhelmingly ionic but that of uranium is more covalent.
- Published
- 2016
27. Ex-Situ Kinetic Investigations of the Formation of the Poly-Oxo Cluster U38
- Author
-
Christophe Volkringer, Thierry Loiseau, Clément Falaise, Christoph Hennig, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille
- Subjects
Extended X-ray absorption fine structure ,Chemistry ,Precipitation (chemistry) ,XRD ,Organic Chemistry ,Solvothermal synthesis ,dodecanuclear cluster U12 ,General Chemistry ,Crystal structure ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Catalysis ,XANES ,NMR ,law.invention ,Crystallography ,EXAFS ,law ,SEM ,Crystallite ,Crystallization ,Absorption (chemistry) ,poly-oxo cluster U38 ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
The ex-situ qualitative study of the kinetic formation of the poly-oxo cluster U38 , has been investigated after the solvothermal reaction. The resulting products have been characterized by means of powder XRD and scanning electron microscopy (SEM) for the solid phase and UV/Vis, X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and NMR spectroscopies for the supernatant liquid phase. The analysis of the different synthesis batches, stopped at different reaction times, revealed the formation of spherical crystallites of UO2 from t=3 h, after the formation of unknown solid phases at an early stage. The crystallization of U38 occurred from t=4 h at the expense of UO2 , and is completed after t=8 h. Starting from pure uranium(IV) species in solution (t=0-1 h), oxidation reactions are observed with a U(IV) /U(VI) ratio of 70:30 for t=1-3 h. Then, the ratio is inversed with a U(IV) /U(VI) ratio of 25/75, when the precipitation of UO2 occurs. Thorough SEM observations of the U38 crystallites showed that the UO2 aggregates are embedded within. This may indicate that UO2 acts as reservoir of uranium(IV), for the formation of U38 , stabilized by benzoate and THF ligands. During the early stages of the U38 crystallization, a transient crystallized phase appeared at t=4 h. Its crystal structure revealed a new dodecanuclear moiety (U12 ), based on the inner hexanuclear core of {U6 O8 } type, decorated by three additional pairs of dinuclear U2 units. The U12 motif is stabilized by benzoate, oxalates, and glycolate ligands.
- Published
- 2015
28. Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories
- Author
-
Atsushi Ikeda-Ohno, Stephan Weiss, Richard Husar, Thorsten Stumpf, Christoph Hennig, René Hübner, Harald Zänker, Philippe Martin, Mélanie Chollet, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research [Dresden], European Synchrotron Radiation Facility (ESRF), Département d'Etudes des Combustibles (DEC), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
- Subjects
Materials science ,Inorganic chemistry ,neptunium ,chemistry.chemical_element ,Catalysis ,chemistry.chemical_compound ,UV/visible absorption spectroscopy ,nanocrystals ,colloids ,transmission electron microscopy ,Materials Chemistry ,[CHIM]Chemical Sciences ,NpO2 ,Aqueous solution ,actinides ,Neptunium ,formation ,Metals and Alloys ,X-ray absorption spectroscopy ,General Chemistry ,Nanocrystalline material ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Dilution ,chemistry ,Transmission electron microscopy ,Ceramics and Composites ,Carbonate ,Absorption (chemistry) - Abstract
International audience; The dilution of aqueous neptunium carbonate complexes induces the intrinsic formation of nanocrystalline neptunium dioxide (NpO2) particles, which are characterised by UV/Vis and X-ray absorption spectroscopies and transmission electron microscopy. This new route of nanocrystalline NpO2 formation could be a potential scenario for the environmental transport of radionuclides from the waste repository (i.e. under near-field alkaline conditions) to the geological environment (i.e. under far-field neutral conditions)
- Published
- 2015
29. A Na-23 Magic Angle Spinning Nuclear Magnetic Resonance, XANES, and High-Temperature X-ray Diffraction Study of NaUO3, Na4UO5, and Na2U2O7
- Author
-
Philippe E. Raison, R.J.M. Konings, Laura Martel, Ian Farnan, Anthony K. Cheetham, Andreas C. Scheinost, Christoph Hennig, Thibault Charpentier, Damien Prieur, Anna Smith, JRC Institute for Transuranium Elements [Karlsruhe] (ITU ), European Commission - Joint Research Centre [Karlsruhe] (JRC), Department of Materials Science and Metallurgy [Cambridge University] (DMSM), University of Cambridge [UK] (CAM), Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Earth Sciences [Cambridge, UK], Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Valence (chemistry) ,Chemistry ,Chemical shift ,nmr chemical-shifts solid-state nmr local-structure silicate crystals mas nmr u-o spectra na glasses system ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,XANES ,0104 chemical sciences ,Inorganic Chemistry ,Paramagnetism ,Crystallography ,Nuclear magnetic resonance ,X-ray crystallography ,Magic angle spinning ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,0210 nano-technology ,Spectroscopy - Abstract
International audience; The valence state of uranium has been confirmed for the three sodium uranates (NaUO3)-O-V/[Rn](5f(1)), (Na4UO5)-O-VI/[Rn](5f(0)), and (Na2U2O7)-O-VI/[Rn] (5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state Na-23 magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn] 5f(0). A Na-23 multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: alpha(a) = 22.7 X 10(-6) K-1, alpha(b) = 12.9 X 10(-6) K-1, alpha(c) = 16.2 x 10(-6) K-1, and alpha(vol) = 52.8 X 10(-6) K-1 for NaUO3 in the range 298-1273 K; alpha(a) = 37.1 X 10(-6) K-1, alpha(c) = 6.2 X 10(-6) K-1, and alpha(vol) = 81.8 X 10(-6) K-1 for Na4UO5 in the range 298-1073 K; alpha(a) = 6.7 x 10(-6) K-1, alpha(b) = 14.4 X 10(-6) K-1, alpha(c) = 26.8 X 10(-6) K-1, alpha(beta) = -7.8 X 10(-6) K-1 and alpha(vol) = -217.6 x 10(-6) K-1 for Na2U2O7 in the range 298-573 K. The alpha to beta phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry.
- Published
- 2014
30. Evidence for the formation of UO2(NO3)42− in an ionic liquid by EXAFS
- Author
-
Olga Klimchuk, Christoph Hennig, Ali Ouadi, Clotilde Gaillard, Isabelle Billard, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institute of Organic Chemistry of NASU [Kyiv], National Academy of Sciences of Ukraine (NASU), Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI ), Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institute of Resource Ecology [Dresden] (IRE), and Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
- Subjects
Extended X-ray absorption fine structure ,010405 organic chemistry ,Inorganic chemistry ,chemistry.chemical_element ,Ionic Liquids ,Uranium ,010402 general chemistry ,UO2(NO3)42 ,01 natural sciences ,0104 chemical sciences ,Ion ,Inorganic Chemistry ,chemistry.chemical_compound ,EXAFS ,chemistry ,Uranyl nitrate ,Nitrate ,Ionic liquid ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Imide ,Dissolution ,[CHIM.RADIO]Chemical Sciences/Radiochemistry - Abstract
The complexation between uranium(vi) and nitrate ions in a hydrophobic ionic liquid (IL), namely [BMI][NO(3)] (BMI = 1-butyl-3-methylimidazolium(+)), is investigated by EXAFS spectroscopy. It was performed by dissolution of uranyl nitrate UO(2)(NO(3))(2)·6H(2)O or UO(2)(Tf(2)N)(2) (Tf(2)N = bis(trifluoromethylsulfonyl)imide (CF(3)SO(2))(2)N(-)). The formation of the complex UO(2)(NO(3))(4)(2-) is evidenced.
- Published
- 2012
31. The role of aspartyl-rich pentapeptides in comparative complexation of actinide(IV) and iron(III). Part 1
- Author
-
Aurélie Jeanson, Gilles Subra, Christoph Hennig, Stéphanie Coantic, Jean Martinez, Eric Quémeneur, Pier Lorenzo Solari, Philippe Moisy, Denis Guillaneux, Sébastien Petit, Harald Funke, Christophe Den Auwer, Claude Berthon, Nicolas Floquet, Olivier Proux, Service de Chimie des Procédés de Séparation (SCPS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Service de Biochimie et Toxicologie Nucléaire (SBTN), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM), Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] ( IBMM ), Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Central des Ponts et Chaussées (LCPC)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Coordination sphere ,plutonium ,Inorganic chemistry ,chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Pentapeptide repeat ,Catalysis ,Coordination complex ,Actinides ,ray-absorption spectroscopy ,hydrolysis products ,[ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM] ,Polymer chemistry ,Materials Chemistry ,Chelation ,[ SDV.BIBS ] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,1144-0546 ,chemistry.chemical_classification ,Extended X-ray absorption fine structure ,010405 organic chemistry ,Neptunium ,General Chemistry ,Actinide ,dynamics ,Carbon-13 NMR ,mossbauer ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,EXAFS ,chemistry ,resonance ,speciation ,xafs ,[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry ,coordination chemistry ,peptides ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Peptides - Abstract
442SH Times Cited:1 Cited References Count:32; Although there is a tremendous volume of data available on the interaction of actinides with living organisms as plants, nearly all the studies are limited to macroscopic or physiological measurements with no specific information at the molecular level. Peptides allow the study of complex coordination chemistry, as that involving actinide(IV) and proteins, without the intricacy of tertiary structure properties. For that purpose, a linear pentapeptide, acetyl-diaspartyl-prolyl-diaspartyl-amide (Ac-Asp-Asp-Pro-Asp-Asp-NH2, denoted PP1 in this report), was synthesized and investigated as a potential chelating ligand of thorium(IV), neptunium(IV) and/or plutonium(IV) cations. Comparison with the biological relevant iron(III) cation is also provided. Noteworthy, PP1 was able to prevent Np(IV) from hydrolysis into an insoluble precipitate. Spectrophotometry, C-13 NMR and EXAFS at the iron K edge and actinide L-3 edges were used to probe the cation coordination sphere and better describe the cation-peptide interaction. The complexes were found to be polynuclear with oxo or hydroxo bridged cations, Fe(III) forming a binuclear complex, Th(IV), Np(IV) or Pu(IV) forming a polynuclear complex with higher nuclearities.
- Published
- 2009
32. The Application of HEXS and HERFD XANES for Accurate Structural Characterisation of Actinide Nanomaterials: The Case of ThO 2
- Author
-
Kristina O. Kvashnina, Anna Yu. Romanchuk, Lucia Amidani, Roman Svetogorov, S. N. Kalmykov, Gavin Vaughan, Tatiana V. Plakhova, Evgeny Gerber, Stephan Weiss, Yves Joly, Institute of Resource Ecology [Dresden] (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), European Synchroton Radiation Facility [Grenoble] (ESRF), Lomonosov Moscow State University (MSU), Surfaces, Interfaces et Nanostructures (SIN), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Condensed Matter - Materials Science ,Materials science ,010405 organic chemistry ,Scattering ,Organic Chemistry ,Nanoparticle ,Pair distribution function ,Recrystallization (metallurgy) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Chemistry ,Actinide ,Random hexamer ,010402 general chemistry ,01 natural sciences ,Catalysis ,XANES ,0104 chemical sciences ,Nanomaterials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Physical chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
The structural characterisation of actinide nanoparticles (NPs) is of primary importance and hard to achieve, especially for non-homogeneous samples with NPs less than 3 nm. By combining high-energy X-ray scattering (HEXS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD XANES) analysis, we have characterised for the first time both the short- and medium-range order of ThO2 NPs obtained by chemical precipitation. By using this methodology, a novel insight into the structures of NPs at different stages of their formation has been achieved. The pair distribution function revealed a high concentration of ThO2 small units similar to thorium hexamer clusters mixed with 1 nm ThO2 NPs in the initial steps of formation. Drying the precipitates at around 150 degrees C promoted the recrystallisation of the smallest units into more thermodynamically stable ThO2 NPs. HERFD XANES analysis at the thorium M-4 edge, a direct probe for f states, showed variations that we have correlated with the breakdown of the local symmetry around the thorium atoms, which most likely concerns surface atoms. Together, HEXS and HERFD XANES are a powerful methodology for investigating actinide NPs and their formation mechanism.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.