5,803 results on '"Institute of Inorganic Chemistry"'
Search Results
2. Characterization of PtIV-containing polyoxometalates by high-resolution solid-state 195Pt and 51V NMR spectroscopy.
- Author
-
Dugar, Sneha, IzarovaOn leave from Nikolaev Institute of Inorganic Chemistry Prospekt Lavrentyeva3 630090 Novosibirsk Russia., Natalya V., Mal, Sib Sankar, Fu, Riqiang, Joo, Hea-Chung, Lee, Uk, Dalal, Naresh S., Pope, Michael T., Jameson, Geoffrey B., and Kortz, Ulrich
- Subjects
- *
PLATINUM catalysts , *POLYOXOMETALATES , *POLYANIONS , *TUNGSTATES , *SOLID state chemistry , *NUCLEAR magnetic resonance spectroscopy - Abstract
We report on the feasibility of applying high-resolution solid-state 195Pt MAS NMR spectroscopy for several PtIV-containing polyoxotungstates, and of 195Pt as well as 51V for a PtIV-containing polyoxovanadate. This method is particularly useful for polyanions which are unstable in solution and/or poorly soluble, as well as for systems exhibiting crystallographic disorder of Pt and W sites. We also report solution 195Pt and 183W NMR spectra of hexatungstoplatinate(iv) [H3PtW6O24]5− for the first time. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
3. On the interrelationship of μ-OH bridged dimers, trimers, and tetramers of (en)PtII and their Ag+ adducts.
- Author
-
Wei-Zheng Shen, Ralf-Dieter Schnebeck, Eva FreisingerPresent address: University of Zürich, Institute of Inorganic Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland., and Bernhard Lippert
- Subjects
IONS ,DIMERS ,INTERMEDIATES (Chemistry) ,BENDING (Metalwork) - Abstract
[(en)Pt(μ-OH)2Pt(en)]2+, a dinuclear μ-hydroxo bridged complex (with en = ethylenediamine) crystallizes with excess AgNO3 in high yield as the trinuclear complex [{(en)Pt(μ-OH)2Pt(en)}Ag](NO3)3 (Pt2Ag, 1) from water. The two halves of the complex are significantly bent (dihedral angle 42.2°) and the three metals form a triangle with the following distances: Pt1⋯Pt2, 2.9729(9) Å, Pt1⋯Ag1, 2.818(1) Å and Pt2⋯Ag1, 2.809(1) Å. The shortness of the Pt⋯Ag distances and the dispositions of the three metal ions strongly suggest that dative bonds from Pt to Ag are responsible for the bending of the two halves of the edge-sharing dinuclear [(en)Pt(μ-OH)2Pt(en)]2+ complex. This scenario appears to be yet another cause of bending of edge-sharing dinuclear μ-OH bridged metal complexes of d8 metal ions, adding to those involving Pt⋯Pt bonding, or anion binding, among others. Comparison with related μ-OH dimers of cis-(NH3)2PtII or (tmeda)PtII (tmeda = N,N,N′,N′-tetramethylethylenediamine), which do not display Ag+ binding, suggests that the feature of Ag+ binding is not common to all cis-bis(am(m)ine) complexes of PtII. Interestingly the complete removal of Ag+ from 1 does not lead to the μ-OH dimer but rather to the known μ-OH tetramer [{(en)Pt(μ-OH)}4]4+. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
4. Mass spectrometric analysis of ubiquitin–platinum interactions of leading anticancer drugs: MALDI versus ESI.
- Author
-
Christian G. HartingerPermanent address: Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria., Wee Han Ang, Angela Casini, Luigi Messori, Bernhard K. Keppler, and Paul J. Dyson
- Subjects
- *
MASS spectrometry , *SPECTRUM analysis , *DRUG side effects , *DRUG interactions - Abstract
The protein binding of anticancer metallodrugs is regarded as an important part in their mode of action both for delivering the active moiety into the tumor but also being responsible for deactivation and/or unwanted side effects. Characterization of protein binding and release may allow new drugs to be designed which are devoid of protein interactions or capable of binding selectively to protein targets. Herein, we report the comparison of different ionization techniques, i.e. matrix-assisted laser desorption/ionization (MALDI) and nanoelectrospray ionization mass spectrometry (nESI-MS), for the analysis of small protein–Pt anticancer drug interactions. For this purpose, cisplatin, transplatin and oxaliplatin were incubated with the model protein ubiquitin (Ub) at a molar ratio of 2 : 1 (Pt : Ub) followed by MS analysis. Cisplatin, transplatin and oxaliplatin formed mainly monoadducts with Ub, but of significantly different composition. As reported earlier, cisplatin forms mainly bifunctional Ub–[Pt(NH3)2] adducts, while with transplatin the most abundant adduct was found to be a monofunctional Ub–[Pt(NH3)2Cl] species. Oxaliplatin formed exclusively bifunctional species of the formula Ub–[Pt(chxn)] (chxn = cyclohexane-1,2-diamine). The applied analysis methods provide comparable results. However, the higher resolution of the nESI-quadrupole time-of-flight (QToF)-MS allowed unambiguous characterization of a series of mono- and bis-adducts including Ub–[Pt(NH3)2(H2O)] for both cisplatin and transplatin. Applying nESI-ion trap (IT)-MS showed the advantage of higher sensitivity than the ToF instruments, allowing the detection of bisadducts of oxaliplatin after one week of incubation. In contrast to the ESI mass spectra, MALDI showed a higher degree of fragmentation of the Ub–platinum conjugates. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
5. A computational study of oxidation of ruthenium porphyrins via ORuIV and ORuVIO species.
- Author
-
Wiktor ZierkiewiczOn leave from Institute of Inorganic Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland., and Timofei Privalov
- Published
- 2006
6. Small molecule activation at uranium coordination complexes: control of reactivity via molecular architecture.
- Author
-
Ingrid Castro-Rodríguez, Karsten MeyerPresent address: Friedrich-Alexander-University Nuremberg-Erlangen, Institute of Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany. E-mail: KMeyer@chemie.uni-erlangen.de, Fax: +49 (0)9131 8527367, and Tel: +49 (0)9131 8527360
- Published
- 2006
7. Monte Carlo simulation of segregation in ceramic thin films.
- Author
-
John A. Purton, Mikhail Yu. LavrentievOn leave from Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia., Neil L. Allan, and Ilian T. Todorov
- Published
- 2005
8. Pressure and temperature effects on metal-to-metal charge transfer in cyano-bridged CoIIIFeII complexes .
- Author
-
Brendan P. MacphersonCurrent address: Institute for Inorganic Chemistry, University of ErlangenNrnberg, Germany., Basam M. Alzoubi, Paul V. Bernhardt, Manuel Martnez, Peter A. Tregloan, Rudi van EldikWilsmore Fellow at the University of Melbourne, and Australia.
- Published
- 2005
9. Size mismatch effects in oxide solid solutions using Monte Carlo and configurational averaging.
- Author
-
Chris E. Mohn, Mikhail Yu. LavrentievOn leave from the Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia., Neil L. Allan, Egil BakkenPresent address: Norwegian Defence Research Establishment, Postbox 25, N2027 Kjeller, Norway., and Svein Stølen
- Published
- 2005
10. Monte Carlo simulation of GaN/InN mixtures.
- Author
-
John A. Purton, Mikhail Yu. LavrentievOn leave from Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia., and Neil L. Allan
- Published
- 2005
11. The dihydrogen bond in X3C–H⋯H–M complexes (X = F, Cl, Br; M = Li, Na, K). A correlated quantum chemical ab initio and density functional theory study.
- Author
-
Wiktor ZierkiewiczOn leave from the Institute of Inorganic Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland., and Pavel Hobza
- Published
- 2004
12. A computational study of oxidation of ruthenium porphyrins viaORuIVand ORuVIO speciesElectronic supplementary information (ESI) available: Description of DFT calculations. Scheme S1: Complex branching reaction pathway of Ru porphyrin autooxidation. Table S1: Selected geometrical parameters, XYZ-structures, vibrational frequencies, IR intensities and theoretical data calculated at DFT (BP86) level for all the complexes. See DOI: 10.1039b513482j
- Author
-
ZierkiewiczOn leave from Institute of Inorganic Chemistry, Wiktor, Technology, Wroclaw University of, Wybrzez, and Privalov, Timofei
- Abstract
An unrestricted density functional theory (UDFT) was applied to study the oxidation of ruthenium porphyrins, [RuP], viaan interaction with molecular oxygen. The important role of dimeric [RuP] complexes, i.e.[RuP]–O2–[RuP], in the oxidation mechanism and particular in the cleavage of O–O bond of molecular oxygen has been studied. Geometries and relative Gibbs free energies of the intermediate Ru-complexes, i.e.dimeric oxo-Ru-porphyrins and O2RuII–(or O2−RuIII)-, ORuIV- and ORuVIO-porphyrins, were evaluated along the proposed reaction pathway. The detailed thermodynamic data of the oxidation reaction [RuIIP] → O[RuIVP] → O[RuVIP]O and important aspects of the vibrational spectra of an oxo-[RuP] has been presented.
- Published
- 2006
- Full Text
- View/download PDF
13. Pressure and temperature effects on metal-to-metal charge transfer in cyano-bridged CoIII–FeIIcomplexes
- Author
-
MacphersonCurrent address: Institute for Inorganic Chemistry, Brendan P., Erlangen–Nürnberg, University of, Germa, Alzoubi, Basam M., Bernhardt, Paul V., Martínez, Manuel, Tregloan, Peter A., van EldikWilsmore Fellow at the University of Melbourne, Rudi, and Australia.
- Abstract
The effects of pressure and temperature on the energy Eop of the metal-to-metal charge transfer MMCT, FeII→CoIII transition of the cyano-bridged complexes trans-L14CoNCFeCN5−and cis-L14CoNCFeCN5−where L14 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine were examined. The changes in the redox potentials of the cobalt and iron metal centres with pressure and temperature were also examined and the results interpreted with Marcus–Hush theory. The observed redox reaction volumes can mainly be accounted for in terms of localised electrostriction effects. The shifts in Eopdue to both pressure and temperature were found to be less than the shifts in the energy difference ΔE° between the CoIII–FeIIand CoII–FeIIIredox isomers. The pressure and temperature dependence of the reorganisational energy, as well as contributions arising from the different spin states of CoII, are discussed in order to account for this trend. To study the effect of pressure on CoIIIelectronic absorption bands, a new cyano-bridged complex, trans-L14CoNCCoCN5, was prepared and characterised spectroscopically and structurally. X-Ray crystallography revealed this complex to be isostructural with trans-L14CoNCFeCN5·5H2O.
- Published
- 2005
- Full Text
- View/download PDF
14. Size mismatch effects in oxide solid solutions using Monte Carlo and configurational averaging
- Author
-
Mohn, Chris E., LavrentievOn leave from the Institute of Inorganic Chemistry, Mikhail Yu., Novosibirsk, 630090, Russia., Allan, Neil L., BakkenPresent address: Norwegian Defence Research Establishment, Egil, 25, Postbox, Kjeller, N2027, Norway., and Stølen, Svein
- Abstract
Local minima configurational averaging CA and Monte Carlo MC simulations are used to examine in detail the variation of thermodynamic and structural properties of binary oxide solid solutions with the volume mismatch between the end members. The maximum volume mismatch studied corresponds to that in the CaO–MgO solid solution, a prototype example of a strongly non-ideal system with large miscibility gap. In addition, solid solutions of CaO–HypO using designed hypothetical atoms Hyp with atomic radii between those of Ca2and Mg2have been considered. Calculations on the hypothetical systems allow not only the systematic investigation of size mismatch, but also the detailed examination and comparison of the CA and MC methods. A particularly efficient implementation of the CA method is viathe rapid calculation of the radial distribution function RDF for all possible arrangements obtained by distributing the different ions on their respective crystallographic sites followed by full structural optimisation of just one configuration from each group with the same RDF. Comparison of results from CA, using optimisations in the static limit, and MC indicates the importance of cell-size and vibrational effects, which can be particularly important for the largest size mismatches. The enthalpies, excess configurational entropies, vibrational entropies and volumes of mixing scale roughly quadratically for all but the largest volume mismatches. Equally sized atoms cluster together in the first coordination shell for all volume mismatches studied.
- Published
- 2005
- Full Text
- View/download PDF
15. Monte Carlo simulation of GaNInN mixtures
- Author
-
Purton, John A., LavrentievOn leave from Institute of Inorganic Chemistry, Mikhail Yu., Novosibirsk, 630090, Russia., and Allan, Neil L.
- Abstract
Exchange Monte Carlo calculations in the semi-grand canonical ensemble are used to determine the mixing properties of GaN and InN in boththe wurtzite and zinc blende structures. Inter-atomic potentials are obtained viaempirical fitting to the experimental, bulk properties of the end member materials. The difference in structure is reflected in the variation of the enthalpy of mixing with composition and phase diagrams for the hexagonal and cubic phases. The calculated consolute temperature is 1725 K, in line with previous calculations. The calculated phase diagrams for the two structures are markedly asymmetric with the maximum in the binodals lying markedly on the Ga rich side. Our results are compared with available experimental data.
- Published
- 2005
- Full Text
- View/download PDF
16. Monte Carlo simulation of segregation in ceramic thin films
- Author
-
Purton, John A., LavrentievOn leave from Institute of Inorganic Chemistry, Mikhail Yu., Novosibirsk, 630090, Russia., Allan, Neil L., and Todorov, Ilian T.
- Abstract
A Monte Carlo exchange technique is used to study segregation in thin ceramic films with application to MgOMnO. The approach is notrestricted to the dilute limit. Surface concentrations as a function of temperature and film composition are determined directly from the simulations. For all compositions studied MnχMg1−χO, 0 ≤ χ≤ 1 the 001 surface is Mn2rich; the occupancy of sites by Mn2decreases rapidly with depth. The ratio of the number of Mn2to Mg2ions at the surface decreases as a function of temperature. The calculated enthalpies of segregation of Mn2for the thin film are strongly dependent on the total Mn2concentration at small Mn2concentrations, with the enthalpy of segregation varying by a factor of two with surface coverage.
- Published
- 2005
- Full Text
- View/download PDF
17. The dihydrogen bond in X3C–HH–M complexes X F, Cl, Br; M Li, Na, K. A correlated quantum chemical ab initioand density functional theory study
- Author
-
ZierkiewiczOn leave from the Institute of Inorganic Chemistry, Wiktor, Technology, Wrocaw University of, Wybr, and Hobza, Pavel
- Abstract
Quantum chemical calculations were performed on nine dihydrogen-bonded complexes with haloform F3CH, Cl3CH and Br3CH as a proton donor and alkali metal hydride HLi, HNa and HK as a proton acceptor. MP26-311Gd,p and B3LYP6-311Gd,p results show that the stabilization energies of these complexes are large and comparable to the stabilization energies of standard H-bonded complexes. Elongation and weakening red shift of the CH, HNa and HK bonds upon complexation were found while contraction and strengthening blue shift was observed in HLi. The HH bond was found to be ionic and its ionicity is larger than that of the HY bond in standard and improper H-bonds. The calculated free energy ΔG revealed that only potassium hydride complexes F3CHHK, Cl3CHHK and Br3CHHK are stable under standard conditions T 298.150 K and p 101.325 N m−2 in the gas phase. To elucidate the role of the electrostatic contribution, the optimization of the proton donor and proton acceptor molecules in the electric field of a partner was performed. The HLi bond is contracted in the electric field of the haloform while the HM M Na, K bonds are elongated and the electrostatic field itself is sufficient explanation of these phenomena. Natural bond order NBO and natural resonance theory NRT analyses were performed. The NBO analysis revealed that significant electron density was transferred from the σ bonding orbital of a proton acceptor to the antibonding σCH orbital of the proton donor. Symmetry adapted perturbation theory SAPT was utilized to decompose the total interaction energy into physically correct contributions.
- Published
- 2004
- Full Text
- View/download PDF
18. Molecular arrangement of rhodamine 6G cations in the films of layered silicates: the effect of the layer charge
- Author
-
BujdákPermanent address: Institute of Inorganic Chemistry, Juraj, Sciences, Slovak Academy of, Bratislava, S, Iyi, Nobuo, Kaneko, Yoshiro, Czímerová, Adriana, and Sasai, Ryo
- Abstract
Montmorillonite nanocor saturated with Lications was used for the synthesis of reduced charge montmorillonites RCMs. The films of RCMs with intercalated rhodamine 6G R6G were prepared by adsorption of the dye on montmorillonite film deposited on a quartz slide. Penetration of the dye into the interlayer spaces of silicates was monitored by elemental analysis and X-ray diffraction measurements of the prepared R6Gsilicate films. Polarized UV-Vis spectroscopy was used for the characterization of the molecular orientation of dye cations on silicate surface. There were several species of R6G cations in the interlayer spaces of the inorganic host, which was easily resolvable by the polarized spectra. The cations forming H-aggregates and absorbing light at low wavelengths were oriented in nearly perpendicular fashion, which was observed as a strongly positive dichroism, i.e., the increase of the dichroic ratio with film tilting. Adsorbed isolated dye cations were inclined at low angles with respect to the plane of the silicate surface. The layer charge of the inorganic host affected only partially the orientation of dye cations in the H-aggregates, but rather it controlled the extent of aggregation and in this way the number of nearly perpendicularly oriented cations.
- Published
- 2003
- Full Text
- View/download PDF
19. Beyond the point defect limit: solid solutions, phase diagrams and trace-element partitioningPresented at the 78th International Bunsen Discussion Meeting on "Complex Oxides: Defect Chemistry, Transport and Chemical Reaction", Vaals, The Netherlands, October 6–9, 2002.
- Author
-
LavrentievOn leave from the Institute of Inorganic Chemistry, M. Yu., Novosibirsk, 630090, Russia., Allan, N. L., and Purton, J. A.
- Abstract
Traditionally disorder in solid oxides has largely been investigated theoretically viaclassical point defect theory; such methods are not readily extended to solid solutions, liquid phases or grossly non-stoichiometric compounds. In this paper we show how Monte Carlo simulations in the semigrand canonical ensemble, which include the explicit interchange of cations and use configurational bias techniques, are an attractive method for situations involving finiteand even high concentrations of defects or foreign atoms. We illustrate our approach with two examples involving CaO: i the phase diagram for the system CaO–MgO is calculated for both solid andliquid phases. All the characteristic features are reproduced, including the eutectic point and the regions of liquid–solid coexistence; ii the first direct calculation of trace-element partitioning between solid and melt phases. Our techniques take full account of local structural distortion and clustering due to the mismatch between the sizes of the cations involved.
- Published
- 2003
- Full Text
- View/download PDF
20. Temperature-triggered gate opening for gas adsorption in microporous manganese formate.
- Author
-
Hyunuk Kim, Denis G. SamsonenkoPermanent address: Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia, Minyoung Yoon, Ji Woong Yoon, Young Kyu Hwang, Jong-San Chang, and Kimoon Kim
- Subjects
- *
ADSORPTION (Chemistry) , *SURFACE chemistry , *NOBLE gases , *PROPERTIES of matter - Abstract
Microporous manganese formate shows temperature-triggered gate opening for nitrogen and argon adsorption, which is not due to a structural change of the framework but due to dynamic opening of the pore aperture and/or sufficient kinetic energy of the adsorbates to overcome a diffusion barrier above a critical temperature. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
21. First direct assembly of molecular helical complexes into a coordination polymer.
- Author
-
Sergey N. SemenovPresent address: University of Zürich, Institute of Inorganic Chemistry, Winterthurerstrasse 190, CH 8057, Zürich, Switzerland., Andrey Yu. Rogachev, Svetlana V. Eliseeva, Claudio Pettinari, Fabio Marchetti, Andrey A. Drozdov, and Sergey I. Troyanov
- Subjects
- *
COMPLEX compounds , *POLYMERS , *ELECTRONS , *MOLECULES - Abstract
Luminescent triple-stranded helicates, formed between Tb(iii) ions and bis-acylpyrazolones, were directly assembled into a 1-D polymeric system. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
22. Study of cytotoxicity performance of carbon nanohorns by method of spin probes
- Author
-
Alexander V. Okotrub, N. T. Kartel, L. V. Ivanov, A. N. Lyapunov, O. A. Gurova, Emmanuel Flahaut, Ya. O. Cherkashina, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine (NASU), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Nikolaev Institute of Inorganic Chemistry - NIIC SB RAS (RUSSIA), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), National Academy of Sciences of Ukraine (UKRAINE), and Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France)
- Subjects
Matériaux ,Cytotoxicity ,Serum albumin ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Matrix (chemical analysis) ,Microviscosity ,Viscosity ,The method of spin probes ,Carbon nanohorns ,General Materials Science ,Physical and Theoretical Chemistry ,Erythrocyte membranes ,biology ,Chemistry ,Organic Chemistry ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Membrane ,Biophysics ,biology.protein ,0210 nano-technology ,Carbon - Abstract
International audience; The effects of as-produced and treated by HNO3(3M) carbon nanohorns on the microviscosity of rat erythrocyte membranes and the viscosity of the water-containing plasma protein matrix were investigated by the method of spin probes. Addition of nanohorns at the concentration of 100 μg/ml to a suspension of erythrocytes led to an increase in membrane microviscosity during 4 h (about 60% effect). In addition, it was shown that nanohorns also induced an increased polarity of the microenvironment for lipophilic probes in the outer layer of membrane phospholipids, as well as disorders in erythrocytes membranes. Addition of nanohorns to plasma led to a little decrease in the viscosity of water and protein matrix, apparently, due to its partial destruction, impacting especially albumin. Pristine and treated by HNO3(3M) acid nanohorns was found more cytotoxic than nanoparticles of oxidized graphene, and significantly less than carbon nanotubes, which are known to dramatically increase the microviscosity of the membranes of erythrocytes and disrupt their integrity.
- Published
- 2020
- Full Text
- View/download PDF
23. Direct liquid injection chemical vapor deposition of ZrO2 films from a heteroleptic Zr precursor: Interplay between film characteristics and corrosion protection of stainless steel
- Author
-
Aleksander Kostka, Asiya E. Turgambaeva, Alsayed Abdel Aal, Diane Samélor, Jérôme Esvan, Sebastian M. J. Beer, Detlef Rogalla, Anjana Devi, Johannes Etzkorn, Constantin Vahlas, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Nikolaev Institute of Inorganic Chemistry - NIIC SB RAS (RUSSIA), Ruhr Universität Bochum - RUB (GERMANY), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Technische Universität Dortmund - TU Dortmund (GERMANY), Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France), Nikolaev Institute of Inorganic Chemistry - NIIC (Novosibirsk, Russia), Ruhr University Bochum (RUB), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Fachhochschule Dortmund (FH-Dortmund), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), and Siberian Branch of the Russian Academy of Sciences (SB RAS)
- Subjects
Materials science ,Matériaux ,02 engineering and technology ,Chemical vapor deposition ,01 natural sciences ,Corrosion ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Biomaterials ,law ,0103 physical sciences ,Zirconium oxide ,Thin film analysis ,Thin film ,Crystallization ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Mining engineering. Metallurgy ,Corrosion protection ,Metals and Alloys ,TN1-997 ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Amorphous solid ,Dielectric spectroscopy ,Chemical engineering ,Electron diffraction ,Ceramics and Composites ,0210 nano-technology ,Electrochemical impedance spectroscopy ,Monoclinic crystal system - Abstract
The direct liquid injection chemical vapor deposition (DLI-CVD) of uniform and dense zirconium oxide (ZrO2) thin films applicable as corrosion protection coatings (CPCs) is reported. We present the entire development chain from the rational choice and thermal evaluation of the suitable heteroleptic precursor [Zr(OiPr)2(tbaoac)2] over the detailed DLI-CVD process design and finally benchmarking the CPC behavior using electrochemical impedance spectroscopy (EIS). For a thorough development of the growth process, the deposition temperature (Tdep) is varied in the range of 400 – 700 °C on Si(100) and stainless steel (AISI 304) substrates. Resulting thin films are thoroughly analyzed in terms of structure, composition, and morphology. Grazing incidence X-ray diffractometry (GIXRD) reveals an onset of crystallization at Tdep ≥ 500 °C yielding monoclinic and even cubic phase at low temperatures. At Tdep = 400 °C, isotropic growth of XRD amorphous material is shown to feature cubic crystalline domains at the interfacial region as revealed by electron diffraction. Corrosion results obtained through EIS measurements and further immersion tests revealed improved CPC characteristic for the 400 °C processed ZrO2 coatings compared to the ones deposited at Tdep ≥ 500 °C, yielding valuable insights into the correlation between growth parameter and CPC performance which are of high relevance for future exploration of CPCs.
- Published
- 2021
- Full Text
- View/download PDF
24. Engineering structure and functionalities of chemical vapor deposited photocatalytic titanium dioxide films through different types of precursors
- Author
-
Sergey V. Trubin, Asiya E. Turgambaeva, Vladislav V. Krisyuk, Jérôme Esvan, Sergey V. Sysoev, Diane Samélor, Constantin Vahlas, Vassilios Constandoudis, Jérémy Cure, Adeline Miquelot, P. A. Stabnikov, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Nanometrisis (Greece), This work was supported by RFBR and CNRS through grants #18-53-15005, and PRC 1986/2018, respectively., Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Nikolaev Institute of Inorganic Chemistry - NIIC SB RAS (RUSSIA), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Nanometrisis (GREECE)
- Subjects
Anatase ,Materials science ,Matériaux ,chemistry.chemical_element ,02 engineering and technology ,Chemical vapor deposition ,010402 general chemistry ,01 natural sciences ,Photocatalytic titanium dioxide ,chemistry.chemical_compound ,Deposition (phase transition) ,General Materials Science ,Thin film ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Chemical vapor deposited ,0104 chemical sciences ,chemistry ,Chemical engineering ,Rutile ,Titanium dioxide ,Photocatalysis ,0210 nano-technology ,Titanium - Abstract
International audience; The photocatalytic properties of titanium dioxide TiO 2 thin films, a seminal semiconductor material in solar radiation involving key enabling technologies depend on their structural characteristics which, in turn are monitored by the type and the conditions of the applied deposition technique. In this work, we investigate the physicochemical characteristics of two solid precursors, oxo-β-diketonate TiO(thd) 2 (1) and mixed alkoxide-β-diketonate Ti(thd) 2 (OBu) 2 (2), for the chemical vapor deposition (CVD) of TiO 2 films as alternatives to the established liquid titanium(IV) isopropoxide (TTIP). We show that vaporization of 1 results in a complex mixture of intermediate species, while that of 2 occurs congruently. Direct liquid injection CVD from 1, 2, and TTIP at 500°C results in anatase containing, rutile rich two phase films for the first two, and to pure anatase for the latter. Films deposited from 1 and 2 are composed of large grains with limited porosity, with smaller and more densely packed aggregates for the former, which also presents a higher O/ Ti ratio in the O-Ti lattice. These differences account for a higher generation rate of H 2 of films from 1, in the photocatalytic decomposition of water. This comparative experimental information can be useful to build new models for extended and more reliable predictions in a materials by design approach.
- Published
- 2021
- Full Text
- View/download PDF
25. Electrochemical Evaluation of Pb, Ag, and Zn Cyanamides/Carbodiimides
- Author
-
Moulay Tahar Sougrati, Maria Alfredsson, Richard Dronskowski, Lorenzo Stievano, Xiaohui Liu, Markus Mann, Jeethu Jiju Arayamparambil, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), School of Physical Sciences [Canterbury], University of Kent [Canterbury], Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Diffraction ,Electrode material ,Materials science ,General Chemical Engineering ,Inorganic chemistry ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,3. Good health ,0104 chemical sciences ,lcsh:Chemistry ,lcsh:QD1-999 ,ddc:660 ,0210 nano-technology ,Absorption (electromagnetic radiation) - Abstract
PbNCN, Ag2NCN, and ZnNCN were tested as negative\ud electrode materials for Li-ion batteries. A thorough analysis of the\ud electrochemical mechanism by X-ray diffraction and X-ray absorption\ud spectroscopy showed that, unlike transition metal carbodiimides, these\ud compounds react with lithium via a two-step reaction, starting with\ud conversion followed by alloying. The conversion reaction is highly\ud irreversible for the three compounds, whereas the reversibility of the alloying\ud reaction depends on the metal, that is, highly irreversible for PbNCN and\ud Ag2NCN which contain the cyanamide group (NC−N2−) and more\ud reversible for ZnNCN containing carbodiimide (−NCN−). In the case\ud of the more covalent, cyanamide-type PbNCN and Ag2NCN, the conversion\ud reaction occurs at a higher voltage compared to the more ionic,\ud carbodiimide-type ZnNCN, correlated with the nature of bonding in the\ud NCN group and in the phases themselves. Compared to transition metal carbodiimides, these materials show rather low\ud performance, with no improvement in capacity as it would have been expected from the combination of conversion and\ud alloying.
- Published
- 2019
- Full Text
- View/download PDF
26. Chemical vapor deposition of Cu films from copper(I) cyclopentadienyl triethylphophine: Precursor characteristics and interplay between growth parameters and films morphology
- Author
-
Vladislav V. Krisyuk, Constantin Vahlas, Asiya E. Turgambaeva, Nathalie Prud’homme, Vassilios Constantoudis, Diane Samélor, François Senocq, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institute of Microelectronics (NCSR 'Demokritos', IAMPPNM), National Center for Scientific Research 'Demokritos' (NCSR), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), National Center for Scientific Research Demokritos - NCSR Demokritos (GREECE), Nikolaev Institute of Inorganic Chemistry - NIIC SB RAS (RUSSIA), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Nanometrisis (GREECE), and Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France)
- Subjects
Morphology ,Materials science ,Hydrogen ,Vapor pressure ,Matériaux ,Thin films ,chemistry.chemical_element ,Copper(I) cyclopentadienyl triethylphophine ,02 engineering and technology ,Activation energy ,Chemical vapor deposition ,Coalescence ,01 natural sciences ,Image analysis ,0103 physical sciences ,Materials Chemistry ,Metal-organic chemical vapor deposition ,Thin film ,010302 applied physics ,Metals and Alloys ,Surfaces and Interfaces ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Copper ,Arrhenius plot ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Chemical engineering ,Nucleation ,0210 nano-technology ,Volatility (chemistry) - Abstract
International audience; Keywords: Copper(I) cyclopentadienyl triethylphophine Copper Thin films Metal-organic chemical vapor deposition Coalescence Nucleation Morphology Image analysis A B S T R A C T The rough, even discontinuous morphology of vapor-deposited copper films inhibits their attractive electrical properties. In the present study, we investigate the influence of deposition time, deposition temperature, and the flow rate of the precursors on the morphology of Cu films deposited from metalorganic chemical vapor de-position. We show that it is necessary to purify the copper(I) cyclopentadienyl triethylphophine (CpCuPEt 3) precursor in order to improve its stability and volatility. We also determined its saturated vapor pressure law, logP sat (Pa) = 8.614-2272/T (K). The Arrhenius plot of the global deposition reaction of Cu films in the presence of hydrogen between 431 and 523 K shows a low apparent activation energy of 10 kJ/mol. Electron probe microanalysis, grazing incidence X-Ray diffraction, and image analysis of the micrographs obtained by top-down surface scanning electron microscopy reveal metallic films composed of Cu islands. Their size and packed density increase and, ultimately, the islands coalesce with increasing precursor flow rate and, to a lesser extent, with increasing deposition temperature.
- Published
- 2020
- Full Text
- View/download PDF
27. Quantum‐Chemical Study of the FeNCN Conversion‐Reaction Mechanism in Lithium‐ and Sodium‐Ion Batteries
- Author
-
Marcus Fehse, Kai-Xuan Chen, Richard Dronskowski, Lorenzo Stievano, Moulay Tahar Sougrati, Angelica Laurita, Jeethu Jiju Arayamparambil, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE (FRANCE), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Dutch Belgian Beam line (DUBBLE), European Synchrotron Radiation Facility (ESRF), Shenzhen Polytechnic, Alexander von Humboldt Foundation, JARA-HPC grant JARA0179 of the IT center of RWTH Aachen University, ANR-10-LABX-0076/10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), European Project: 28721,ALISTORE, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), European Synchroton Radiation Facility [Grenoble] (ESRF), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Battery (electricity) ,Materials science ,batteries ,Sodium ,chemistry.chemical_element ,Thermodynamics ,02 engineering and technology ,lithium ions ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Catalysis ,Computational Chemistry ,[CHIM]Chemical Sciences ,Research Articles ,Quantum chemical ,Conversion reaction ,010405 organic chemistry ,General Medicine ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Mechanism (philosophy) ,ddc:540 ,carbodiimides ,density functional calculations ,ddc:660 ,Lithium ,0210 nano-technology ,Ternary operation ,Research Article ,Voltage - Abstract
We report a computational study on 3d transition‐metal (Cr, Mn, Fe, and Co) carbodiimides in Li‐ and Na‐ion batteries. The obtained cell voltages semi‐quantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversion‐reaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Li‐ion battery) and partial (Na‐ion battery) discharge, even though experimental atomistic knowledge is missing up to now. Moreover, we rationalize the structural preference of intermediate ternaries and their characteristic lowering in the voltage profile using chemical‐bonding and Mulliken‐charge analysis. The formation of such ternary intermediates for the lithiation of FeNCN and the contribution of at least one ternary intermediate is also confirmed experimentally. This theoretical approach, aided by experimental findings, supports the atomistic exploration of electrode materials governed by conversion reactions., A clear case: A computational study on the conversion‐reaction mechanism of FeNCN in Li‐ and Na‐ion batteries yields calculated voltage profiles which agree well with experiments, and their characteristic behavior is well explained by chemical‐bonding and Mulliken‐charge analysis. Furthermore, a predicted ternary intermediate with composition Li2Fe2(NCN)3 during lithiation is confirmed by operando XAS analysis.
- Published
- 2020
- Full Text
- View/download PDF
28. Effect of Co-Mo catalyst preparation and CH4/H2 flow on carbon nanotube synthesis
- Author
-
Alexander V. Okotrub, Lyubov G. Bulusheva, Emmanuel Flahaut, Egor V. Lobiak, Viktoriia R. Kuznetsova, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Nikolaev Institute of Inorganic Chemistry - NIIC SB RAS (RUSSIA), Novosibirsk State Technical University (RUSSIA), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France), Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk State Technical University, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Hydrogen ,Matériaux ,Carbon nanotubes ,chemistry.chemical_element ,02 engineering and technology ,Carbon nanotube ,010402 general chemistry ,Combustion ,Electrochemistry ,01 natural sciences ,Methane ,Catalysis ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,symbols.namesake ,chemistry.chemical_compound ,law ,Specific surface area ,General Materials Science ,Physical and Theoretical Chemistry ,Organic Chemistry ,021001 nanoscience & nanotechnology ,Catalytic chemical vapor deposition ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,chemistry ,Chemical engineering ,symbols ,CH4/H2 mixture ,Co-Mo catalyst ,0210 nano-technology ,Raman spectroscopy ,Electrochemical capacitors - Abstract
Supported Co-Mo catalysts with a given ratio of metals were prepared from polyoxomolybdate Mo12O28(μ2-OH)12{Со(H2O)3}4 using impregnation and combustion methods. Effects of the type of catalyst and the ratio and flow of methane and hydrogen gases on the structure of carbon nanotubes (CNTs) synthesized by catalytic chemical vapor deposition (CCVD) method were studied using transmission electron microscopy and Raman spectroscopy. The catalyst prepared by combustion method yielded mainly individualized CNTs, while the CNTs were highly entangled or bundled when impregnation method was used. In both cases, addition of hydrogen to methane led to reduction of the CNT yield. The samples synthesized using two different catalysts and the same CH4/H2 ratio and flow of gases were tested in electrochemical capacitors. A higher specific surface area of the CNTs grown over impregnation-prepared catalyst caused a better performance at scan rates from 2 to 1000 mV/s.
- Published
- 2020
- Full Text
- View/download PDF
29. Cobalt Carbodiimide as Negative Electrode for Li‐Ion Batteries: Electrochemical Mechanism and Performance
- Author
-
Moulay Tahar Sougrati, Richard Dronskowski, Jeethu Jiju Arayamparambil, Antonella Iadecola, Markus Mann, Lorenzo Stievano, Bernard Fraisse, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
X-ray absorption spectroscopy ,Materials science ,Absorption spectroscopy ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Catalysis ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Transition metal ,Electrode ,Cyanamide ,0210 nano-technology ,Cobalt ,Carbodiimide - Abstract
International audience; Cobalt carbodiimide, CoNCN, shows outstanding performance as negative electrode material for Li‐ion batteries, maintaining a reversible capacity of 530 mAh g−1 over 140 cycles at a current density of 540 mA g−1. The electrochemical lithiation/delithiation mechanism of cobalt carbodiimide was investigated using complementary in situ X‐ray diffraction and X‐ray absorption spectroscopy. Upon lithiation, CoNCN undergoes a reversible conversion reaction, forming Li2NCN and fcc Co metal nanoparticles, which are transformed back into CoNCN upon delithiation. However, the CoNCN obtained electrochemically after delithiation do not recover the local structure of the pristine phase, and might contain the NCN2− ligand in the cyanamide isomer form (N−C≡N2−). It would be the first time that a transition metal cyanamide isomer is obtained at ambient conditions.
- Published
- 2019
- Full Text
- View/download PDF
30. Heteroleptic, two-coordinate [M(NHC){N(SiMe3)2}] (M = Co, Fe) complexes: synthesis, reactivity and magnetism rationalized by an unexpected metal oxidation state
- Author
-
Andreas A. Danopoulos, Moniek Tromp, Jean-Marc Latour, Martin Clémancey, Pierre Braunstein, Kirill Yu. Monakhov, Elixabete Rezabal, Anass Benayad, Jan van Leusen, Gilles Frison, Paul Kögerler, Institut de Chimie de Strasbourg, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam (UvA), Laboratoire de chimie moléculaire (LCM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), van ‘t Hoff Institute for Molecular Sciences, École polytechnique (X)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Catalyst Characterisation (HIMS, FNWI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010405 organic chemistry ,Stereochemistry ,Chemistry ,010402 general chemistry ,01 natural sciences ,XANES ,0104 chemical sciences ,3. Good health ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Inorganic Chemistry ,Metal ,Crystallography ,Magnetization ,X-ray photoelectron spectroscopy ,Heteronuclear molecule ,Oxidation state ,visual_art ,ddc:540 ,visual_art.visual_art_medium ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Reactivity (chemistry) ,Isostructural - Abstract
The linear, two-coordinate and isostructural heteroleptic [M(IPr){N(SiMe3)2}] (IPr = 1,3-bis(diisopropylphenyl)-imidazol-2-ylidene), formally MI complexes (M = Co, 3; Fe, 4) were obtained by the reduction of [M(IPr)Cl{N(SiMe3)2}] with KC8, or [Co(IPr){N(SiMe3)2}2] with mes*PH2, mes* = 2,4,6-tBu3C6H2. The magnetism of 3 and 4 implies CoII and FeII centres coupled to one ligand-delocalized electron, in line with XPS and XANES data; the ac susceptibility of 4 detected a pronounced frequency dependence due to slow magnetization relaxation. Reduction of [Fe(IPr)Cl{N(SiMe3)2}] with excess KC8 in toluene gave the heteronuclear ‘inverse-sandwich’ Fe–K complex 7, featuring η6-toluene sandwiched between one Fe0 and one K+ centre.
- Published
- 2017
- Full Text
- View/download PDF
31. Carbodiimides as energy materials: which directions for a reasonable future?
- Author
-
Richard Dronskowski, Lorenzo Stievano, Moulay Tahar Sougrati, Jeethu Jiju Arayamparambil, Adam Slabon, Xiaohui Liu, Markus Mann, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Alistore-ERI (European Research Institute) is gratefully acknowledged for financial support through the PhD grant to J. A., European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institute of Inorganic Chemistry [Aachen], and Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
- Subjects
Materials science ,Oxide ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Redox ,0104 chemical sciences ,Catalysis ,Anode ,Inorganic Chemistry ,chemistry.chemical_compound ,chemistry ,Transition metal ,Chemical engineering ,Metastability ,Energy materials ,0210 nano-technology ,Ternary operation - Abstract
International audience; A little less than a decade after their quantum-chemical prediction and eventual synthesis, solid-state transition-metal carbodiimides and closely related compounds have somewhat unexpectedly emerged as energy materials. In these carbodiimides, the O2− oxide dianion has been replaced by the complex NCN2− dianion, and the outstanding properties of such materials are likely related to their metastability and their higher amount of covalency compared to related oxides. When used as anode materials in rechargeable Li- and Na-ion batteries, one finds a conversion reaction, and further improving their performance will likely involve studying the redox behavior of NCN2−, the synthesis of novel ternary carbodiimides, in particular those with redox-active transition metals, and controlling their morphology. At present, such materials serve as catalysts in photochemical water oxidation, where they outperform their oxide cousins.
- Published
- 2018
- Full Text
- View/download PDF
32. Cs2Ln3CuS8 (Ln = La–Nd, Sm–Tb): Synthesis, Crystal Structure, and Magnetic and Optical Properties
- Author
-
Tatiana A. Pomelova, Charlène Delacotte, Natalia V. Kuratieva, Pierric Lemoine, Stéphane Cordier, SangJun Park, Thierry Guizouarn, Vincent Pelletier, Regis Gautier, Nikolay G. Naumov, Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Novosibirsk State Technical University, Russian Academy of Sciences [Moscow] (RAS), and International Research Project CLUSPOM 2019-2023 bewteen France and Russia. Innovative Molecules, Materials & Nanomaterials: From Primitive Bricks to the Design of Functional Devices
- Subjects
Inorganic Chemistry ,crystal structure ,magnetocaloric ,[CHIM.CRIS]Chemical Sciences/Cristallography ,magnetic properties ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Physical and Theoretical Chemistry ,DFT calculations ,lanthanide sulfide - Abstract
International audience; This work reports the preparation of new quaternary sulfides Cs(2)Ln(3)CuS(8) (Ln = La-Nd, Sm-Tb), their original crystal and electronic structures, and their magnetic properties. The sulfides were prepared using a reactive flux method from mixtures of Ln(2)S(3) (EuS), Cs(2)S(6), Cu(2)S, and S. They crystallize in a new type of structure (C2/m space group) and exhibit a layer-like crystal structure, which is a hybrid of those of the ACe(2)CuS(6) series (A = Cs, K) and that of K(2)CeCu(2)S(4). The values of the optical band gap calculated by the Kubelka-Munk equation are in the range of 1.2-2.62 eV depending on the nature of the Ln ion. The Cs(2)Gd(3)CuS(8) compound displays relatively great magnetic refrigerating properties at cryogenic temperature with the mass entropy change (-ΔS(M)) reaching 19.5 J kg(-1) K(-1) at 3.5 K for ΔH = 5 T.
- Published
- 2023
- Full Text
- View/download PDF
33. Probing Frontier Orbital Energies of {Co 9 (P 2 W 15 ) 3 } Polyoxometalate Clusters at Molecule–Metal and Molecule–Water Interfaces
- Author
-
Yi, Xiaofeng, Izarova, Natalya V., Stuckart, Maria, Thomas, Louis, Vuillaume, Dominique, Van Leusen, Jan, Duchon, Tomas, Nemsak, Slavomir, Bourone, Svenja D. M., Schmitz, Sebastian, Izarova, Natalya, Guerin, David, Lenfant, Stéphane, Duchoň, Tomáš, Nemšák, Slavomír, Bourone, Svenja, Kögerler, Paul, CTP, Centre Technique du Papier (CTP), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institute for Industrial Management [RWTH Aachen University] (FIR e.V. an der RWTH Aachen), Institute of Inorganic Chemistry [Aachen], and Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
- Subjects
Materials science ,physics.chem-ph ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,Metal ,Colloid and Surface Chemistry ,Physics - Chemical Physics ,Monolayer ,Cluster (physics) ,Molecule ,Molecular orbital ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Chemical Physics (physics.chem-ph) ,[PHYS]Physics [physics] ,Aqueous solution ,Physics - Applied Physics ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Crystallography ,visual_art ,ddc:540 ,Chemical Sciences ,Polyoxometalate ,visual_art.visual_art_medium ,Cyclic voltammetry ,physics.app-ph ,0210 nano-technology - Abstract
Functionalization of polyoxotungstates with organoarsonate co-ligands enabling surface decoration was explored for the triangular cluster architectures of the composition [CoII9(H2O)6(OH)3(p-RC6H4AsVO3)2({\alpha}-PV2WVI15O56)3]25-({Co9(P2W15)3}, R = H or NH2), isolated as Na25[Co9(OH)3(H2O)6(C6H5AsO3)2(P2W15O56)3]86H2O (Na-1) and Na25[Co9(OH)3(H2O)6(H2NC6H4AsO3)2(P2W15O56)3]86H2O (Na-2). The axially oriented para-aminophenyl groups in 2 facilitate the formation of self-assembled monolayers on gold surfaces, and thus provide a viable molecular platform for charge transport studies of magnetically functionalized polyoxometalates. The title systems were isolated and characterized in the solid state and in aqueous solutions, and on metal surfaces. Using conducting tip atomic force microscopy (C-AFM), the energies of {Co9(P2W15)3} frontier molecular orbitals in the surface-bound state were found to directly correlate with cyclic voltammetry data in aqueous solution., Comment: Full paper with figures and supporting information
- Published
- 2017
- Full Text
- View/download PDF
34. Reversible High Capacity and Reaction Mechanism of Cr 2 (NCN) 3 Negative Electrodes for Li‐Ion Batteries
- Author
-
Richard Dronskowski, Kai-Xuan Chen, Moulay Tahar Sougrati, Markus Mann, Jeethu Jiju Arayamparambil, Lorenzo Stievano, Bernard Fraisse, Antonella Iadecola, Xianji Qiao, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Shenzhen Polytechnic, Grant JARA-HPC (JARA0179) of IT center of RWTH Aachen University, ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), ANR-10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010), European Project: 28721,ALISTORE, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE (FRANCE), ANR-10-LABX-0076/10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), and ANR-10-EQPX-0045/10-EQPX-0045,ROCK,Spectromètre EXAFS Rapide pour Cinétiques Chimiques(2010)
- Subjects
Reaction mechanism ,Materials science ,Absorption spectroscopy ,Intercalation (chemistry) ,Inorganic chemistry ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Redox ,0104 chemical sciences ,chemistry.chemical_compound ,General Energy ,chemistry ,Electrochemical reaction mechanism ,Lithium ,ddc:620 ,0210 nano-technology ,Carbodiimide - Abstract
Energy technology 8(3), 1901260 (2020). doi:10.1002/ente.201901260, Published by Wiley-VCH, Weinheim [u.a.]
- Published
- 2020
- Full Text
- View/download PDF
35. Mixed Alkyl Hydrido Complexes of Zinc: Synthesis, Structure, and Reactivity
- Author
-
Thomas P. Spaniol, Jun Okuda, Arnab Rit, Laurent Maron, Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)
- Subjects
chemistry.chemical_classification ,010405 organic chemistry ,Dimer ,Organic Chemistry ,chemistry.chemical_element ,Zinc ,010402 general chemistry ,01 natural sciences ,Medicinal chemistry ,0104 chemical sciences ,Adduct ,Inorganic Chemistry ,IMes ,chemistry.chemical_compound ,chemistry ,Organic chemistry ,Formate ,Reactivity (chemistry) ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,Carbene ,Alkyl - Abstract
International audience; The (NNNN)-type macrocycle 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane (Me3TACD, 1,4,7-Me3[12]aneN4) reacted with 1 equiv of ZnEt2 under ethane elimination to give the mononuclear ethyl complex [(Me3TACD)ZnEt] (1). Upon treatment of (Me3TACD)H with 2 equiv of ZnEt2, the dinuclear complex [(Me3TACD)(ZnEt)(ZnEt2)] (2) was formed, which was converted with an additional 1 equiv of (Me3TACD)H to 1. Reaction of 1 with PhSiH3 led to the formation of a tetranuclear ethyl hydrido complex [{(Me3TACD)ZnEt}2(ZnEtH)2] (3). Single-crystal X-ray diffraction study revealed 3 to be a centrosymmetric dimer featuring two [(Me3TACD)ZnEt] units coordinated to a [Zn(μ-H)2Zn] core via amido nitrogen atoms of the Me3TACD ligands. Substitution of the two [(Me3TACD)ZnEt] units in 3 by N-heterocyclic carbene IMes [1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] gave [(IMes)ZnEtH]2 (4b). The mixed alkyl hydrido complexes [(IMes)ZnRH]2 (R = Me, 4a; Et, 4b) were alternatively synthesized in quantitative yield by reacting [(IMes)ZnR2] (R = Me, Et) with [(IMes)ZnH2]2 in 2:1 ratio. Methyl complex 4a reacted with CO2 (p(CO2) = 0.5 bar) under facile insertion of CO2 into Zn–H bonds to give dinuclear formate complex [(IMes)ZnMe(O2CH)]2 (5a). Treatment of 4b with CO2 (p(CO2) = 0.5 bar) afforded a mixture of di- and trinuclear formate complexes [(IMes)ZnEt(O2CH)]2 (5b) and [(IMes)2Zn3Et3(O2CH)3] (6) under elimination of one IMes as CO2 adduct IMes·CO2.
- Published
- 2014
- Full Text
- View/download PDF
36. Calcium Hydride Cation [CaH](+) Stabilized by an NNNN-type Macrocyclic Ligand: A Selective Catalyst for Olefin Hydrogenation
- Author
-
Schuhknecht, Danny, Lhotzky, Carolin, Spaniol, Thomas P., Maron, Laurent, Okuda, Jun, Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,calcium hydride ,[CHIM]Chemical Sciences ,alkaline-earth metals ,hydrogenation ,isotope exchange - Abstract
bibtex: ISI:000411267800062 bibtex\location:'POSTFACH 101161, 69451 WEINHEIM, GERMANY',publisher:'WILEY-V C H VERLAG GMBH',type:'Article',affiliation:'Okuda, J (Reprint Author), Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52056 Aachen, Germany. Maron, L (Reprint Author), Univ Toulouse, CNRS, UMR 5215, INSA,UPS, 135 Ave Rangueil, F-31077 Toulouse, France. Schuhknecht, Danny; Lhotzky, Carolin; Spaniol, Thomas P.; Okuda, Jun, Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52056 Aachen, Germany. Maron, Laurent, Univ Toulouse, CNRS, UMR 5215, INSA,UPS, 135 Ave Rangueil, F-31077 Toulouse, France.','author-email':'laurent.maron@irsamc.ups-tlse.fr jun.okuda@ac.rwth-aachen.de',da:'2018-12-05','doc-delivery-number':'FH6FD',eissn:'1521-3773','funding-acknowledgement':'Deutsche Forschungsgemeinschaft through the International Research Training Group \textquotedblleftSelectivity in Chemo- and Biocatalysis\textquotedblright [IRTG 1628]','funding-text':'We thank the Deutsche Forschungsgemeinschaft through the International Research Training Group \textquotedblleftSelectivity in Chemo- and Biocatalysis\textquotedblright (IRTG 1628) for financial support.','journal-iso':'Angew. Chem.-Int. Edit.','keywords-plus':'SIGMA-BOND METATHESIS; GROUP METAL-CATALYSTS; ISOTOPE-EXCHANGE; COMPLEXES; HYDROSILYLATION; ACTIVATION; SYSTEM; CAH+; H-2; BIS(TRIPHENYLSILYL)CALCIUM','number-of-cited-references':'59','research-areas':'Chemistry','times-cited':'10','unique-id':'ISI:000411267800062','usage-count-last-180-days':'5','usage-count-since-2013':'18','web-of-science-categories':'Chemistry, Multidisciplinary'\; Reaction of dibenzyl calcium complex [Ca(Me(4)TACD)(CH2Ph)(2)], containing the neutral NNNN-type macrocyclic ligand Me(4)TACD (Me(4)TACD=1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane), with triphenylsilane gave the cationic dinuclear calcium hydride [Ca2H2(Me(4)TACD)(2)](PhCHSiPh3)(2) which was characterized by NMR spectroscopy and single-crystal X-ray diffraction. The cation can be regarded as the ligand-stabilized dimeric form of hypothetical [CaH](+). Hydrogenolysis of benzyl calcium cation [Ca(Me(4)TACD)(CH2Ph)(thf)](+) gave dicationic calcium hydrides [Ca2H2(Me(4)TACD)(2)][BAr4](2) (Ar=C6H4-4-Bu-t; C6H3-3,5-Me-2) containing weakly coordinating anions. In THF, they catalyzed the isotope exchange of H-2 and D-2 to give HD and the hydrogenation of unactivated 1-alkenes.
- Published
- 2017
37. Evolutionary history of the brown rat: out of southern East Asia and selection
- Author
-
Dong-Dong Wu, Serge Morand, Ya-Ping Zhang, Hojjat Asadollahpour Nanaei, Lin Zeng, He Qun Liu, Saeed S. Sohrabi, Ming Sheng Peng, Ali Esmailizadeh, Fabrice Brescia, Newton O. Otecko, Zhi-Bin Zhang, Solimane Ag Atteynine, Yong-Hong Yao, Yan-Hua Su, Stephen C. Donnellan, Li Y, Ambroise Dalecky, Gérard Rocamora, David M. Irwin, Haipeng Li, L. Y. Su, Chen Ming, Ying Song, Xiaohiu Liu, Ken Aplin, Ming Shan Wang, Kunming Institute of Zoology, Chinese Academy of Sciences [Beijing] (CAS), Yunnan Agricultural University, Laboratoire Population-Environnement-Développement (LPED), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU), South Australian Museum, and Australian Centre for Evolutionary Biology and Biodiversity, University of Adelaide, Australian National Wildlife Collection, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Chinese Academy of Agricultural Sciences (CAAS), Institute of Zoology, State Key Laboratory of Integrated Management on Pest Insects and Rodents in Agriculture, Shahid Bahonar University of Kerman, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Université des sciences, des techniques et des technologies de Bamako, Université des sciences, des techniques et des technologies de Bamako (USTTB), Université des Seychelles, Institut Agronomique Néo-Calédonien (IAC), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Shanghai Institutes for Biological Sciences, Kunming Institute of Zoology (KIZ), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE)
- Subjects
0303 health sciences ,Brown rat ,biology ,Positive selection ,Energy metabolism ,Zoology ,biology.organism_classification ,3. Good health ,Laboratory rat ,03 medical and health sciences ,0302 clinical medicine ,Biological dispersal ,East Asia ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Domestication ,030217 neurology & neurosurgery ,Selection (genetic algorithm) ,030304 developmental biology - Abstract
The brown rat (Rattus norvegicus) is found wherever humans live and transmits many diseases, and its breeding produced the laboratory rat used widely in medical research. Here, we sequenced whole genomes from 118 rats to explore the origin and dispersal routes of the brown rat and the domestication of the laboratory rat. We showed that brown rats migrated about 3600 years ago from southern East Asia, rather than Northern Asia as formerly suggested, to the Middle East and then to Europe and Africa. Many genes involved in the immune system experienced positive selection in the wild brown rat, while genes involved in the nervous system and energy metabolism showed evidence of artificial selection during the domestication of laboratory strains. Our findings demystify the puzzling origin and migration of brown rats and reveal the impact of evolution and domestication on this animal.
- Published
- 2016
- Full Text
- View/download PDF
38. METAL CARBODIIMIDES AND METAL CYANAMIDES AS ELECTRODE MATERIALS
- Author
-
Sougrati, Moulay Tahar, Ali, Darwiche, Monconduit, Laure, Stievano, Lorenzo, Hermann, Raphaël Pierre, Abdelfattah, Mahmoud, Herlitschke, Markus, Dronskowski, Richard, Liu, Xiaohui, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, GREENMAT-LCIS, Université de Liège, Jülich Centre for Neutron Science (JCNS), Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), and Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
(EN)The invention relates to the use of a metal carbodiimide or a metal cyanamide as a new active material for a negative electrode, a negative electrode comprising said metal carbodiimide or metal cyanamide, its preparation method, a battery comprising said negative electrode, and a method for the preparation of a composite material.(FR)L'invention concerne l'utilisation d'un carbodiimide métallique ou d'un cyanamide métallique en tant que nouveau matériau actif pour une électrode négative, une électrode négative comprenant ce carbodiimide métallique ou ce cyanamide métallique, son procédé de préparation, une batterie comprenant l'électrode négative, et un procédé pour la préparation d'un matériau composite.
- Published
- 2016
39. Molecular Calcium Hydride: Dicalcium Trihydride Cation Stabilized by a Neutral NNNN-Type Macrocyclic Ligand
- Author
-
Valeri Leich, Laurent Maron, Thomas P. Spaniol, Jun Okuda, Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Alkaline earth metal ,Calcium hydride ,010405 organic chemistry ,Inorganic chemistry ,Cationic polymerization ,chemistry.chemical_element ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,Calcium ,010402 general chemistry ,01 natural sciences ,Medicinal chemistry ,Catalysis ,0104 chemical sciences ,3. Good health ,chemistry.chemical_compound ,chemistry ,Deuterium ,Hydrogenolysis ,[CHIM]Chemical Sciences ,Macrocyclic ligand - Abstract
International audience; Hydrogenolysis of bis(triphenylsilyl)calcium containing the neutral NNNN‐type macrocyclic amine ligand Me4TACD [Ca(Me4TACD)(SiPh3)2] (2), gave the cationic dinuclear calcium hydride [Ca2H3(Me4TACD)2](SiPh3) (3), characterized by NMR spectroscopy, single‐crystal X‐ray analysis, and DFT calculations. Compound 3 reacted with deuterium to give the deuteride [D3]‐3.
- Published
- 2016
40. Transition‐Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium‐ and Sodium‐Ion Batteries with Excellent Cycling Properties
- Author
-
Sougrati, Moulay Tahar, Ali, Darwiche, Liu, Xiaohiu, Abdelfattah, Mahmoud, Hermann, Raphaël P., Jouen, Samuel, Monconduit, Laure, Dronskowski, Richard, Stievano, Lorenzo, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), GREENMAT-LCIS, Université de Liège, Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
[CHIM]Chemical Sciences ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; We report evidence for the electrochemical activity of transition‐metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali‐metal‐ion batteries, similar to its oxide analogue FeO. Based on 57Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe−NCN into Li/Na−NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well‐established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g−1 for hundreds of charge–discharge cycles. Similar to the iron compound, several other transition‐metal carbodiimides Mx(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.
- Published
- 2016
- Full Text
- View/download PDF
41. Isomery of [Re6S6Br8] and [Re6S5Br9] Units in a Rhenium Cluster Thiobromide: Experimental and Theoretical Approaches
- Author
-
Régis Gautier, Guillaume Pilet, Yuri V. Mironov, Stéphane Cordier, Bruno Fontaine, Christiane Perrin, André Perrin, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Laboratoire des Multimatériaux et Interfaces (LMI), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Nikolaev Institute of Inorganic Chemistry [Novosibirsk] (NIC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Diffraction ,chemistry.chemical_element ,Chalcohalide ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,DFT calculations ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Isomerism ,Cluster (physics) ,General Materials Science ,Bromine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Trigonal crystal system ,Rhenium ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,3. Good health ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Crystallography ,chemistry ,Cluster ,Density functional theory ,0210 nano-technology ,Solid solution - Abstract
The rhenium cluster thiobromide Cs1.95(1)Re6S5.82(3)Br8.19(3), belonging to the solid solution Cs2Re6S6Br8–CsRe6S5Br9, crystallizes in the trigonal system (P31c, a = 10.001(5) A and c = 14.676(5) A). It is built up from [Re6L 8 i ]Br 6 a cluster units in which sulphur and bromine are randomly distributed on inner position (Li). From the structural refinement performed using single-crystal X-ray diffraction data, the isomers of the [Re6Si 6Br 2 i ] and [Re6S 5 i Br 3 i ] cluster cores present in the structure have been unambiguously determined, due to the non-centro symmetry of the structure. Density functional theory calculations have been performed for all possible di- and tri-substituted isomers in order to confirm experimental analyses. Slight differences between the stability of di-substituted and tri-substituted cluster unit isomers built from Mo6 cluster and Re6 clusters are evidenced.
- Published
- 2008
- Full Text
- View/download PDF
42. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties
- Author
-
Xiaohiu Liu, Abdelfattah Mahmoud, Richard Dronskowski, Raphaël P. Hermann, Laure Monconduit, Moulay Tahar Sougrati, Samuel Jouen, Ali Darwiche, Lorenzo Stievano, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), GREENMAT-LCIS, Université de Liège, Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemistry ,Inorganic chemistry ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Catalysis ,0104 chemical sciences ,Anode ,chemistry.chemical_compound ,Electrochemical reaction mechanism ,Electrode ,Lithium ,Graphite ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Carbodiimide - Abstract
We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g(-1) for hundreds of charge-discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M(x)(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.
- Published
- 2016
- Full Text
- View/download PDF
43. Formation and Reactivity of a Molecular Magnesium Hydride with a Terminal Mg—H Bond
- Author
-
Thomas P. Spaniol, Jun Okuda, Silvia Schnitzler, Laurent Maron, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen], and Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
- Subjects
010405 organic chemistry ,Magnesium ,Hydrogen bond ,Acetylide ,Organic Chemistry ,Magnesium hydride ,chemistry.chemical_element ,General Chemistry ,010402 general chemistry ,01 natural sciences ,Medicinal chemistry ,Catalysis ,0104 chemical sciences ,Adduct ,chemistry.chemical_compound ,chemistry ,Pyridine ,Organic chemistry ,[CHIM]Chemical Sciences ,Macrocyclic ligand ,Derivative (chemistry) ,ComputingMilieux_MISCELLANEOUS - Abstract
A complex featuring a terminal magnesium hydride bond supported by an NNNN macrocyclic ligand, [Mg{Me3 TACD⋅Al(iBu)3}H] (3), was formed from its labile Al(iBu)3 adduct. Use of Al(iBu)3 to block the amido nitrogen of the NNNN macrocyclic ligand was essential to prevent aggregation. The structurally characterized compound 3 reacted with BH3 to give the BH4 derivative, whereas Me3 SiCCH and PhSiH3 led to the corresponding acetylide and silyl derivative under H2 elimination. Pyridine is inserted into the MgH bond to give selectively the 1,4-dihydropyridinate.
- Published
- 2015
44. Yttrium Dihydride Cation [YH 2 (THF) 2 ] + n : Aggregate Formation and Reaction with (NNNN)-Type Macrocycles
- Author
-
Arndt, Stefan, Kramer, Mathias, Fegler, Waldemar, Nakajima, Yumiko, del Rosal, Iker, Poteau, Romuald, Spaniol, Thomas, Maron, Laurent, Okuda, Jun, Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
International audience; Monocationic bis(hydrocarbyl)yttrium complexes [YR2(THF)2][A] (R = CH2SiMe3, CH2C6H4-o-NMe2; A = weakly coordinating anion) underwent hydrogenolysis using dihydrogen or phenylsilane to give a mixture of polynuclear solvent-stabilized dihydride cations [YH2(THF)2]n[A]n. The mixture composition as well as the nuclearity n depended on the starting material, solvent, and reaction conditions. NMR spectroscopic data in solution and X-ray diffraction data suggested that the main product was tetranuclear, although conclusive structural data were not obtained. DFT calculations supported a closo-type tetrahedral [YH2(THF)2]44+ core. The hydridic character of these cations was revealed by their reaction with benzophenone to give the bis(diphenylmethoxy) cation [Y(OCHPh2)2(THF)4][AlR4]. The reaction of this cluster with the (NNNN)-type macrocycle Me4TACD under dihydrogen gave the dinuclear tetrahydride dication with quadruply bridging hydride ligands, [Y2(μ-H)4(Me4TACD)2][A]2, analogous to the previously characterized lutetium derivative. NH-acidic (Me3TACD)H gave the dinuclear dihydride dication [Y2(μ-H)2(Me3TACD)2(THF)2][A]2.
- Published
- 2015
45. Synthesis and Reactivity of Palladium Complexes Featuring a Diphosphinoborane Ligand
- Author
-
Hassan Osseili, Laurent Maron, Michael E. Tauchert, Tobias Schindler, Lennart T. Scharf, Marius Peters, Marcel Lux, Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Allylic rearrangement ,Ligand ,organic chemicals ,Organic Chemistry ,Leaving group ,food and beverages ,chemistry.chemical_element ,Borane ,Medicinal chemistry ,Oxidative addition ,3. Good health ,Inorganic Chemistry ,chemistry.chemical_compound ,chemistry ,Allyl acetate ,Pyridine ,Organic chemistry ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Palladium - Abstract
Synthetic access to the zerovalent palladium complexes {[(o-Ph2PC6H4)2BPh]Pd(L)} (L = pyridine (8a), 2,6-lutidine (8b)) is reported. Structural characterization and DFT analysis of 8a revealed a strong Pd→B interaction, which appears to inhibit oxidative addition reactions. Activation of allyl acetate is possible by reversible transfer of the acetate leaving group to the ligand’s borane functionality. Catalytic activity in the allylic substitution of allyl acetate with HNEt2 is sensitive to the presence of free acetate, which reduces borane inhibition by reversible borate formation.
- Published
- 2015
46. Discrete Magnesium Hydride Aggregates: A Cationic Mg 13 H 18 Cluster Stabilized by NNNN-Type Macrocycles
- Author
-
Martin, Daniel, Beckerle, Klaus, Schnitzler, Silvia, Spaniol, Thomas, Maron, Laurent, Okuda, Jun, Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)
- Subjects
hydrogen ,hydrides ,cluster compounds ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,magnesium ,macrocylic ligands - Abstract
International audience; Large magnesium hydride aggregates [Mg13(Me3TACD)6(μ2‐H12)(μ3‐H6)][A]2 ((Me3TACD)H=1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane; A=AlEt4, AlnBu4, B{3,5‐(CF3)2C6H3}4) were synthesized stepwise from alkyl complexes [Mg2(Me3TACD)R3] (R=Et, nBu) and phenylsilane in the presence of additional MgII ions. The central magnesium atom is octahedrally coordinated by six hydrides as in solid α‐MgH2 of the rutile type. Further coordination to six magnesium atoms leads to a substructure of seven edge‐sharing octahedra as found in the hexagonal layer of brucite (Mg(OH)2). Upon protonolysis in the presence of 1,2‐dimethoxyethane (DME), this cluster was degraded into a tetranuclear dication [Mg2(Me3TACD)(μ‐H)2(DME)]2[A]2.
- Published
- 2015
47. An ion pair scandium hydride supported by a dianionic (NNNN)-type macrocycle ligand
- Author
-
Peng Cui, Laurent Maron, Thomas P. Spaniol, Jun Okuda, Institute of Inorganic Chemistry [Aachen], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institute of Inorganic Chemistry [Aachen] (IAC RWTH), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemistry ,Ligand ,education ,Inorganic chemistry ,Metals and Alloys ,General Chemistry ,Ion pairs ,Catalysis ,3. Good health ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ion ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Ceramics and Composites ,[CHIM]Chemical Sciences ,Reactivity (chemistry) ,Scandium hydride - Abstract
International audience; A scandium hydride supported by a (NNNN)-type macrocycle consists of a trinuclear cation and a trinuclear anion. The anion shows significantly higher reactivity.
- Published
- 2014
- Full Text
- View/download PDF
48. The Evolution of the Conductivity and Cathodoluminescence of the Films of Hafnium Oxide in the Case of a Change in the Concentration of Oxygen Vacancies
- Author
-
Lebedev, M. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Branch (Russian Federation)]
- Published
- 2018
- Full Text
- View/download PDF
49. Effect of Oxygen Nonstoichiometry on the Magnetic Phase Transitions in Frustrated YBaCo{sub 4}O{sub 7+ x} (x = 0, 0.1, 0.2) Cobaltites
- Author
-
Lavrov, A. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Branch (Russian Federation)]
- Published
- 2018
- Full Text
- View/download PDF
50. Influence of Morphological Defects on Thermophysical Properties of γ-Gd{sub 2}S{sub 3}
- Author
-
Sokolov, V. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Branch (Russian Federation)]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.