1. Pseudo-disordered structures for light trapping improvement in mono-crystalline Si thin-films
- Author
-
Abdelmounaim Harouri, Emmanuel Drouard, Loïc Lalouat, B Gonzalez-Acevedo, Christian Seassal, Valerie Depauw, He Ding, Regis Orobtchouk, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), IMEC (IMEC), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Inl, Laboratoire INL UMR5270, Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), INL - Nanophotonique ( INL - Photonique ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), IMEC ( IMEC ), and Catholic University of Leuven ( KU Leuven )
- Subjects
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[ SPI.MAT ] Engineering Sciences [physics]/Materials ,Nanophotonics ,Physics::Optics ,chemistry.chemical_element ,02 engineering and technology ,Trapping ,[SPI.MAT] Engineering Sciences [physics]/Materials ,01 natural sciences ,7. Clean energy ,[PHYS] Physics [physics] ,[SPI.MAT]Engineering Sciences [physics]/Materials ,010309 optics ,Optics ,Aluminium ,0103 physical sciences ,Crystalline silicon ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Thin film ,Rigorous coupled-wave analysis ,Photonic crystal ,[PHYS]Physics [physics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[ PHYS ] Physics [physics] ,[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Renewable Energy, Sustainability and the Environment ,business.industry ,021001 nanoscience & nanotechnology ,Ray ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business - Abstract
International audience; Thin film solar cells may exhibit high conversion efficiencies provided their active material exhibits a high quality, like in the case of crystalline silicon, and if incident light coupling and absorption are appropriately controlled. We propose to integrate an advanced light trapping process relying on photonic crystals including a controlled pseudo-disorder. Thanks to Rigorous Coupled Wave Analysis, we determine the optimized nanophotonic structures that should be appropriately introduced in 1 µm thick crystalline silicon layers standing on a metal layer like aluminum. Thanks to a carefully controlled pseudo-disorder perturbation, absorption in these designed nanopatterns overcome that predicted in the case of fully optimized square lattice photonic crystals. Fabricated structures are analyzed in light of this numerical investigation to evidence the impact of such controlled perturbations, but also the influence of the measurement method and the technological imperfections. Thanks to the optimized perturbated photonic crystals, the integrated absorption in 1 µm thick crystalline Silicon layer increases from 37.7%, in the case of the unpatterned stack, to 70.7%. The sole effect of pseudo-disorder on the fully optimized simply periodic photonic crystals leads to an absolute increase of the integrated absorption up to 2%, as predicted by simulations, while both structures are fabricated using exactly the same process flow.
- Published
- 2017