1. Viscoplasticity of voided cubic crystals under hydrostatic loading
- Author
-
Martín I. Idiart, Louis Joëssel, Mihail Garajeu, Pierre-Guy Vincent, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Aix Marseille Université (AMU), Departamento de Aeronáutica [La Plata], Facultad de Ingeniería [La Plata], Universidad Nacional de la Plata [Argentine] (UNLP)-Universidad Nacional de la Plata [Argentine] (UNLP), Institut de Radioprotection et de SÃreté Nucléaire, IRSN DAFCJ/SJ/LS 20137Universidad Nacional de La Plata, UNLP I-2017-225, and Institut de Radioprotection et de SÃreté Nucléaire, IRSN DAFCJ/SJ/LS 20137Universidad Nacional de La Plata, UNLP I-2017-225
- Subjects
porosity ,Materials science ,HOMOGENIZATION ,homogenization ,INGENIERÍAS Y TECNOLOGÍAS ,02 engineering and technology ,Plasticity ,Mecánica Aplicada ,law.invention ,Crystal ,micromechanics ,VISCOPLASTICITY ,0203 mechanical engineering ,law ,General Materials Science ,viscoplasticity ,Anisotropy ,MICROMECHANICS ,Ingeniería Mecánica ,[PHYS]Physics [physics] ,Viscoplasticity ,Applied Mathematics ,Mechanical Engineering ,Isotropy ,POROSITY ,Mechanics ,Dissipation ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,020303 mechanical engineering & transports ,Creep ,Mechanics of Materials ,Modeling and Simulation ,crystalline solids ,Hydrostatic equilibrium ,CRYSTALLINE SOLIDS ,0210 nano-technology - Abstract
A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies. Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; Francia Fil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; Francia Fil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; Francia Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
- Published
- 2018
- Full Text
- View/download PDF