1. Evolution of a mushy zone in a static temperature gradient using a volume average approach
- Author
-
G. Salloum-Abou-Jaoude, N. Pinter, Markus Apel, C.-A. Aledo, I. Spindler, H. Nguyen Thi, Guillaume Reinhart, Hervé Combeau, Miha Založnik, Andre Phillion, Guillaume Boussinot, McMaster University [Hamilton, Ontario], Labex DAMAS, Université de Lorraine ( UL ), Institut Jean Lamour ( IJL ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Ecole Nationale Supérieure des Mines de Nancy ( ENSMN ), Institut Mines-Télécom [Paris]-Université de Lorraine ( UL ), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence ( IM2NP ), Aix Marseille Université ( AMU ) -Université de Toulon ( UTLN ) -Centre National de la Recherche Scientifique ( CNRS ), Access e.V., ANR-11-LABX-0008/11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures ( 2011 ), Université de Lorraine (UL), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de Nancy (ENSMN), Université de Lorraine (UL)-Institut Mines-Télécom [Paris] (IMT), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Mines-Télécom [Paris] (IMT)-Université de Lorraine (UL), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Convection ,Materials science ,Polymers and Plastics ,Volume averaging method ,Alloy ,[ SPI.MAT ] Engineering Sciences [physics]/Materials ,Boundary (topology) ,Thermodynamics ,02 engineering and technology ,engineering.material ,01 natural sciences ,Control volume ,Phase field method ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Planar ,Solidification ,[ SPI.FLUID ] Engineering Sciences [physics]/Reactive fluid environment ,0103 physical sciences ,Temperature gradient zone melting ,010302 applied physics ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Dynamics (mechanics) ,Metals and Alloys ,Synchrotron x-ray radiography ,021001 nanoscience & nanotechnology ,Electronic, Optical and Magnetic Materials ,Temperature gradient ,Ceramics and Composites ,engineering ,Jump ,0210 nano-technology - Abstract
International audience; A volume average model to study the transition of a semi-solid mushy zone to a planar solid/liquid interface in a static temperature gradient is presented. This model simulates the principal phenomena governing mushy zone dynamics including solute diffusion in the interdendritic and bulk liquids, migration of both the solid-liquid interface and the mushy-liquid boundary at the bottom and top of the mushy zone, and solidification. The motion of the solid-liquid interface is determined analytically by performing a microscopic solute balance between the solid and mushy zones. The motion of the mushy-liquid boundary is more complex as it consists of a transition between the mushy and bulk liquid zones with rapidly changing macroscopic properties. In order to simulate this motion, a control volume characterized by continuity in the solute concentration and a jump in both the liquid fraction and the solute concentration gradient was developed. The volume average model has been validated by comparison against prior in-situ X-ray radiography measurements [1], and phase-field simulations [2] of the mushy-to-planar transition in an Al-Cu alloy. A very good similarity was achieved between the observed experimental and phase-field dynamics with this new model even though the described system was only one-dimensional. However , an augmentation of the solute diffusion coefficient in the bulk liquid was required in order to mimic the convective solute transport occurring in the in situ X-ray study. This new model will be useful for simulating a wide range of natural and engineering processes.
- Published
- 2017