Ricardo Soares Magalhães and colleagues used national cross-sectional household-based demographic health surveys to map the distribution of anemia risk in preschool children in Burkina Faso, Ghana, and Mali., Background Childhood anaemia is considered a severe public health problem in most countries of sub-Saharan Africa. We investigated the geographical distribution of prevalence of anaemia and mean haemoglobin concentration (Hb) in children aged 1–4 y (preschool children) in West Africa. The aim was to estimate the geographical risk profile of anaemia accounting for malnutrition, malaria, and helminth infections, the risk of anaemia attributable to these factors, and the number of anaemia cases in preschool children for 2011. Methods and Findings National cross-sectional household-based demographic health surveys were conducted in 7,147 children aged 1–4 y in Burkina Faso, Ghana, and Mali in 2003–2006. Bayesian geostatistical models were developed to predict the geographical distribution of mean Hb and anaemia risk, adjusting for the nutritional status of preschool children, the location of their residence, predicted Plasmodium falciparum parasite rate in the 2- to 10-y age group (Pf PR2–10), and predicted prevalence of Schistosoma haematobium and hookworm infections. In the four countries, prevalence of mild, moderate, and severe anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali. The mean Hb was lowest in Burkina Faso (89 g/l), in males (93 g/l), and for children 1–2 y (88 g/l). In West Africa, severe malnutrition, Pf PR2–10, and biological synergisms between S. haematobium and hookworm infections were significantly associated with anaemia risk; an estimated 36.8%, 14.9%, 3.7%, 4.2%, and 0.9% of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium infections, hookworm infections, and S. haematobium/hookworm coinfections, respectively. A large spatial cluster of low mean Hb (95%) was predicted for an area shared by Burkina Faso and Mali. We estimate that in 2011, approximately 6.7 million children aged 1–4 y are anaemic in the three study countries. Conclusions By mapping the distribution of anaemia risk in preschool children adjusted for malnutrition and parasitic infections, we provide a means to identify the geographical limits of anaemia burden and the contribution that malnutrition and parasites make to anaemia. Spatial targeting of ancillary micronutrient supplementation and control of other anaemia causes, such as malaria and helminth infection, can contribute to efficiently reducing the burden of anaemia in preschool children in Africa. Please see later in the article for the Editors' Summary, Editors' Summary Background Global estimates for the time period 1993–2005 suggest that that worldwide, nearly 300 million children had anemia, that is, hemoglobin levels less than 110 g/l. In sub-Saharan Africa, two-thirds of all children were anemic, representing 83.5 million children. These statistics are important because anemia in infancy and childhood is associated with poor cognitive development, reduced growth, problems with immune function—and ultimately, decreased survival. Malnutrition (including micronutrient deficiency, especially of iron, vitamin A, vitamin C, and folate), undernutrition, and infectious diseases, particularly HIV, malaria, and helminth infections (caused by hookworm and Schistosoma haematobium—which causes urinary schistosomiasis), are major causes of anemia in children. Although iron supplementation can often correct anemia, in some circumstances, iron deficiency can protect against common infectious agents, and giving iron can, on occasion, increase the severity of infectious disease in some children. Focusing on the treatment and prevention of infectious diseases that cause anemia is therefore an important alternative strategy in the treatment of anemia. Why Was This Study Done? Control tools for targeting interventions for malaria and helminth infection in sub-Saharan Africa include modern spatial risk prediction methods that combine statistical models with geographical information systems (similar to those used in car navigation systems). However, to date no studies have used these tools to spatially predict the risk of anemia. Furthermore, the contribution that malnutrition and infections make to the overall anemia burden in Africa is largely unknown. In this study the researchers used these tools to predict the prevalence of anemia in three West African countries and to estimate the attributable risk of anemia due to malnutrition, malaria, and helminth infections. What Did the Researchers Do and Find? The researchers used geographically linked data from the most recent Demographic and Health Surveys (DHS) in Burkina Faso (2003), Ghana (2003), and Mali (2006), which included capillary blood sampling and testing and detailed anthropometric (height and weight) measurements. A total of 7,147 children aged 1–4 years (3,477 girls and 3,670 boys) in the three countries were included in the analysis. The researchers mapped DHS survey locations in the three study countries using DHS cluster coordinates in a geographic information system. Using data from the Malaria Atlas Project, the researchers extracted spatially predicted values of Plasmodium falciparum parasite rate for each DHS cluster using a geographical information system and used previously reported parasitological survey data of hookworm and S. haematobium infections to predict helminth infection risk across the region. Then the researchers developed spatial prediction models using Bayesian statistics to estimate of the population attributable fraction for specific predictors for anemia. Data from the DHS showed that the prevalence of mild, moderate, and severe anemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali. The prevalence of stunting, wasting, and being underweight in the study area was 87.8%, 89.7%, and 71.2%, respectively, and the mean P. falciparum parasite rate, and rates of S. haematobium infection, hookworm infection, and S. haematobium/hookworm coinfection for the study area were 52.0%, 26.8%, 8.2%, and 3.6%, respectively. The overall results indicate that in the three countries, approximately 6.7 million children aged 1–4 years have anemia. Severe malnutrition, P. falciparum infection, hookworm infection, S. haematobium infection, and hookworm/S. haematobium coinfection were responsible for an estimated 2.5 million, 1.0 million, 250,000, 285,000, and 61,000 anemia cases, respectively. Central Burkina Faso and southern Ghana had the highest number of anemic children. What Do These Findings Mean? These results add insight and detail to anemia prevalence and anemia severity within different geographical areas in three West African countries. The combination of anemia and mean hemoglobin predictive maps identifies communities in West Africa where preschool-age children are at increased risk of morbidity. The use of anemia maps has important practical implications for targeted control in these countries, such as guiding the efficient allocation of nutrient supplements and fortified foods, and enabling risk assessment of anemia due to different causes, which would in turn constitute an evidence base to calculate the best balance between interventions. Additional Information Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000438. This study is further discussed in a PLoS Medicine Perspective by Abdisalan Noor The WHO Web site has comprehensive information on the worldwide prevalence of anemia More information on Demographic Health Surveys is available More information on global predictions of malaria is available