1. Predictive model for construction labour productivity using hybrid feature selection and principal component analysis
- Author
-
Ebrahimi, Sara, Kazerooni, Matin, Sumati, Vuppuluri, and Fayek, Aminah Robinson
- Subjects
Construction industry -- Models ,Principal components analysis -- Usage ,Machine learning -- Usage ,Industrial productivity -- Models ,Algorithms -- Usage ,Productivity ,Algorithm ,Engineering and manufacturing industries - Abstract
Construction labour productivity (CLP) is affected by numerous variables made up of subjective and objective factors. Thus, CLP modelling and prediction are a complex task, leading to high computational cost and the risk of overfitting of data. This paper proposes a predictive model for CLP by integrating hybrid feature selection (HFS), as a combination of filter and wrapper methods, with principal component analysis (PCA). This developed HFS-PCA method reduces the dimensionality and complexity of CLP data and obtains better prediction performance by identifying the most predictive factors. Identified factors are utilized as inputs for various classification methods to predict CLP. Finally, prediction errors of the classification methods with and without using the proposed HFS-PCA method are compared, and the most accurate classification method is selected to develop the CLP predictive model. Experimental results show that using HFS-PCA for CLP prediction leads to better performances compared with past studies. Key words: construction labour productivity prediction, hybrid feature selection, principal component analysis, genetic algorithm, support vector machine, ReliefF algorithm La productivite du travail dans la construction (PTC) repose sur de nombreuses variables constituees de facteurs subjectifs et objectifs. Ainsi, la modelisation et la prediction de la PTC est une tache complexe, occasionnant un cout de calcul eleve et un risque de surapprentissage des donnees. Le present document propose un modele predictif pour la PTC en integrant la selection des caracteristiques hybrides (SCH), en tant que combinaison de methodes de filtrage et d'enveloppeur, avec l'analyse des composantes principales (ACP). Cette methode SCH-ACP developpee reduit la dimensionnalite et la complexite des donnees PTC et obtient une meilleure performance de prediction en identifiant les facteurs les plus predictifs. Les facteurs identifies sont utilises comme intrants pour diverses methodes de classification afin de predire la PTC. Enfin, on compare l'erreur de prediction des methodes de classification avec et sans l'utilisation de la methode SCH-ACP proposee, et on choisit la methode de classification la plus precise pour elaborer le modele predictif de PTC. Les resultats experimentaux montrent que l'utilisation de la SCH-ACP pour la prediction de la PTC conduit a de meilleures performances par rapport aux etudes anterieures. [Traduit par la Redaction] Mots-cles : prediction de la productivite du travail de construction, selection de caracteristiques hybrides (SCH), analyse des composantes principales (ACP), algorithme genetique, machine a vecteurs de support, algorithme ReliefF, 1. Introduction As the construction industry accounts for the highest share of employment and labour costs comprise the majority of overall project costs in many countries (Heravi and Eslamdoost 2015), [...]
- Published
- 2022
- Full Text
- View/download PDF