1. Comparison of different PCR amplification targets for molecular diagnosis of Strongyloides stercoralis .
- Author
-
Marquet F, Mora N, Incani RN, Jesus J, Méndez N, Mujica R, Trosel H, and Ferrer E
- Subjects
- Animals, Polymerase Chain Reaction methods, RNA, Ribosomal, 18S genetics, DNA, Ribosomal genetics, Feces parasitology, Strongyloides stercoralis genetics, Strongyloidiasis diagnosis, Strongyloidiasis parasitology
- Abstract
Molecular techniques are an alternative for the diagnosis of strongyloidiasis, produced by Strongyloides stercoralis. However, it is necessary to determine the best amplification target for the populations of this parasite present in a geographical area and standardize a polymerase chain reaction (PCR) protocol for its detection. The objectives of this work were the comparison of different PCR targets for molecular detection of S. stercoralis and the standardization of a PCR protocol for the selected target with the best diagnostic results. DNA extraction was performed from parasite larvae by saline precipitation. Three amplification targets of the genes encoding ribosomal RNA 18S (18S rDNA) and 5.8S (5.8S rDNA) and cytochrome oxidase 1 (COX1) of S. stercoralis were compared, and the PCR reaction conditions for the best target were standardized (concentration of reagents and template DNA, hybridization temperature, and number of cycles). The analytical sensitivity and specificity of the technique were determined. DNA extraction by saline precipitation made it possible to obtain DNA of high purity and integrity. The ideal target was the 5.8S rDNA, since the 18S rDNA yielded non-reproducible results and COX1 never amplified under any condition tested. The optimal conditions for the 5.8S rDNA-PCR were: 1.5 mM MgCl
2 , 100 μM dNTPs, 0.4 μM primers, and 0.75 U DNA polymerase, using 35 cycles and a hybridization temperature of 60 °C. The analytical sensitivity of the PCR was 1 attogram of DNA, and the specificity was 100%. Consequently, the 5.8S rDNA was shown to be highly sensitive and specific for the detection of S. stercoralis DNA.- Published
- 2023
- Full Text
- View/download PDF