1. A Design of a Lightweight In-Vehicle Edge Gateway for the Self-Diagnosis of an Autonomous Vehicle.
- Author
-
Jeong, YiNa, Son, SuRak, Jeong, EunHee, and Lee, ByungKwan
- Subjects
AUTONOMOUS vehicles ,IN-vehicle computing ,GATEWAYS (Computer networks) - Abstract
This paper proposes a Lightweight In-Vehicle Edge Gateway (LI-VEG) for the self-diagnosis of an autonomous vehicle, which supports a rapid and accurate communication between in-vehicle sensors and a self-diagnosis module and between in-vehicle protocols. A paper on the self-diagnosis module has been published previously, thus this paper only covers the LI-VEG, not the self-diagnosis. The LI-VEG consists of an In-Vehicle Sending and Receiving Layer (InV-SRL), an InV-Management Layer (InV-ML) and an InV-Data Translator Layer (InV-DTL). First, the InV-SRL receives the messages from FlexRay, Control Area Network (CAN), Media Oriented Systems Transport (MOST), and Ethernet and transfers the received messages to the InV-ML. Second, the InV-ML manages the message transmission and reception of FlexRay, CAN, MOST, and Ethernet and an Address Mapping Table. Third, the InV-DTL decomposes the message of FlexRay, CAN, MOST, and Ethernet and recomposes the decomposed messages to the frame suitable for a destination protocol. The performance analysis of the LI-VEG shows that the transmission delay time about message translation and transmission is reduced by an average of 10.83% and the transmission delay time caused by traffic overhead is improved by an average of 0.95%. Therefore, the LI-VEG has higher compatibility and is more cost effective because it applies a software gateway to the OBD, compared to a hardware gateway. In addition, it can reduce the transmission error and overhead caused by message decomposition because of a lightweight message header. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF