1. Data from ERBB2 Induces an Antiapoptotic Expression Pattern of Bcl-2 Family Members in Node-Negative Breast Cancer
- Author
-
Jan Georg Hengstler, Martin Schuler, Heinz Kölbl, Jonathan West, Lindsey Maccoux, Jörg Rahnenführer, Katja Ickstadt, Marc Brulport, Holger Schwender, Evgenia Freis, Silvia Selinski, Wiebke Schormann, Matthias Hermes, Susanne Gebhard, Mathias Gehrmann, Marcus Schmidt, Esther Fieber, and Ilka Brigitte Petry
- Abstract
Purpose: Members of the Bcl-2 family act as master regulators of mitochondrial homeostasis and apoptosis. We analyzed whether ERBB2 influences the prognosis of breast cancer by influencing the proapoptotic versus antiapoptotic balance of Bcl-2 family members.Experimental Design: ERBB2-regulated Bcl-2 family members were identified by inducible expression of ERBB2 in MCF-7 breast cancer cells and by correlation analysis with ERBB2 expression in breast carcinomas. The prognostic relevance of ERBB2-regulated and all additional Bcl-2 family members was determined in 782 patients with untreated node-negative breast cancer. The biological relevance of ERBB2-induced inhibition of apoptosis was validated in a murine tumor model allowing conditional ERBB2 expression.Results: ERBB2 caused an antiapoptotic phenotype by upregulation of MCL-1, TEGT, BAG1, BNIP1, and BECN1 as well as downregulation of BAX, BMF, BNIPL, CLU, and BCL2L13. Upregulation of the antiapoptotic MCL-1 [P = 0.001, hazard ratio (HR) 1.5] and BNIP3 (P = 0.024; HR, 1.4) was associated with worse prognosis considering metastasis-free interval, whereas clusterin (P = 0.008; HR, 0.88) and the proapoptotic BCL2L13 (P = 0.019; HR, 0.45) were associated with better prognosis. This indicates that ERBB2 alters the expression of Bcl-2 family members in a way that leads to adverse prognosis. Analysis of apoptosis and tumor remission in a murine tumor model confirmed that the prototypic Bcl-2 family member Bcl-xL could partially substitute for ERBB2 to antagonize tumor remission.Conclusions: Our results support the concept that ERBB2 influences the expression of Bcl-2 family members to induce an antiapoptotic phenotype. Antagonization of antiapoptotic Bcl-2 family members might improve breast cancer therapy, whereby MCL-1 and BNIP3 represent promising targets. Clin Cancer Res; 16(2); 451–60
- Published
- 2023