1. IL-17-driven induction of Paneth cell antimicrobial functions protects the host from microbiota dysbiosis and inflammation in the ileum.
- Author
-
Brabec T, Vobořil M, Schierová D, Valter E, Šplíchalová I, Dobeš J, Březina J, Dobešová M, Aidarova A, Jakubec M, Manning J, Blumberg R, Waisman A, Kolář M, Kubovčiak J, Šrůtková D, Hudcovic T, Schwarzer M, Froňková E, Pinkasová T, Jabandžiev P, and Filipp D
- Subjects
- Animals, Child, Humans, Mice, Antimicrobial Peptides, Dysbiosis microbiology, Ileum microbiology, Inflammation pathology, Interleukin-17, Paneth Cells pathology, Ileitis microbiology, Microbiota, Receptors, Interleukin-17 genetics
- Abstract
Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs. These changes become more pronounced after colonization with IL-17 inducing segmented filamentous bacteria. Mice with PCs that lack IL-17R show an increased inflammatory transcriptional profile in the ileum along with the severity of experimentally induced ileitis. These changes are associated with a decrease in the diversity of gut microbiota that induces a severe ileum pathology upon transfer to genetically susceptible mice, which can be prevented by the systemic administration of IL-17a/f in microbiota recipients. In an exploratory analysis of a small cohort of pediatric patients with Crohn's disease, we have found that a portion of these patients exhibits a low number of lysozyme-expressing ileal PCs and a high ileitis severity score, resembling the phenotype of mice with IL-17R-deficient PCs. Our study identifies IL-17R-dependent signaling in PCs as an important mechanism that maintains ileal homeostasis through the prevention of dysbiosis., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF