1. Structural Optimization of Foldamer-Dendrimer Conjugates as Multivalent Agents against the Toxic Effects of Amyloid Beta Oligomers
- Author
-
Éva Bartus, Gábor Olajos, Ildikó Schuster, Zsolt Bozsó, Mária A. Deli, Szilvia Veszelka, Fruzsina R. Walter, Zsolt Datki, Zsolt Szakonyi, Tamás A. Martinek, and Livia Fülöp
- Subjects
amyloid β ,molecular recognition ,foldamer ,protein aggregation ,multivalency ,Organic chemistry ,QD241-441 - Abstract
Alzheimer’s disease is one of the most common chronic neurodegenerative disorders. Despite several in vivo and clinical studies, the cause of the disease is poorly understood. Currently, amyloid β (Aβ) peptide and its tendency to assemble into soluble oligomers are known as a main pathogenic event leading to the interruption of synapses and brain degeneration. Targeting neurotoxic Aβ oligomers can help recognize the disease at an early stage or it can be a potential therapeutic approach. Unnatural β-peptidic foldamers are successfully used against many different protein targets due to their favorable structural and pharmacokinetic properties compared to small molecule or protein-like drug candidates. We have previously reported a tetravalent foldamer-dendrimer conjugate which can selectively bind Aβ oligomers. Taking advantage of multivalency and foldamers, we synthesized different multivalent foldamer-based conjugates to optimize the geometry of the ligand. Isothermal titration calorimetry (ITC) was used to measure binding affinity to Aβ, thereafter 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based tissue viability assay and impedance-based viability assay on SH-SY5Y cells were applied to monitor Aβ toxicity and protective effects of the compounds. Important factors for high binding affinity were determined and a good correlation was found between influencing the valence and the capability of the conjugates for Aβ binding.
- Published
- 2018
- Full Text
- View/download PDF