Samuel Beaulieu, Nicolas Thiré, Yunpei Deng, Ali S. Alnaser, Heide Ibrahim, Vincent Wanie, Xiao-Min Tong, Igor Litvinyuk, François Légaré, Bruno E. Schmidt, Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Centre d'Etudes Lasers Intenses et Applications (CELIA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Advanced Laser Light Source-INRS-EMT, Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM)-Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), Max Planck Society, American University of Sharjah, Centre for Quantum Dynamics, Griffith University [Brisbane], Center for Computational Sciences [Tsukuba] (CCS), Université de Tsukuba = University of Tsukuba, Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, and Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
International audience; Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H$_2$ and D$_2$ molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.