1. Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of N‑Linked Glycopeptides.
- Author
-
Bell V, Richard J., Hage, David S., and Dodds, Eric D.
- Abstract
Glycosylation is a common modification across living organisms and plays a central role in understanding biological systems and disease. Our ability to probe the gylcome has grown exponentially in the past several decades. However, further improvements to the analytical toolbox available to researchers would allow for increased capabilities to probe structure and function of biological systems and to improve disease treatment. This article applies the developing technique of two-dimensional Fourier transform ion cyclotron resonance mass spectrometry to a glycoproteomic workflow for the standard glycoproteins coral tree lectin (CTL) and bovine ribonuclease B (BRB) to demonstrate its feasibility as a tool for glycoproteomic workflows. 2D infrared multiphoton dissociation and electron capture dissociation spectra of CTL reveal comparable structural information to their 1D counterparts, confirming the site of glycosylation and monosaccharide composition of the glycan. Spectra collected in 2D of BRB reveal correlation lines of fragment ion scans and vertical precursor ion scans for data collected using infrared multiphoton dissociation and diagonal cleavage lines for data collected by electron capture dissociation. The use of similar techniques for glycoproteomic analysis may prove valuable in instances where chromatographic separation is undesirable or quadrupole isolation is insufficient. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF