24 results on '"INTERSTELLAR TURBULENCE"'
Search Results
2. Atomic and Ionized Microstructures in the Diffuse Interstellar Medium.
- Author
-
Stanimirović, Snežana and Zweibel, Ellen G.
- Abstract
It has been known for half a century that the interstellar medium (ISM) of our Galaxy is structured on scales as small as a few hundred kilometers, more than 10 orders of magnitude smaller than typical ISM structures and energy input scales. In this review we focus on neutral and ionized structures on spatial scales of a few to ∼104 AU, which appear to be highly overpressured, as these have the most important role in the dynamics and energy balance of interstellar gas: the tiny scale atomic structures (TSASs) and extreme scattering events (ESEs) as the most overpressured example of the tiny scale ionized structures (TSISs). We review observational results and highlight key physical processes at AU scales. We present evidence for and against microstructures as part of a universal turbulent cascade and as discrete structures, and we review their association with supernova remnants, the Local Bubble, and bright stars. We suggest a number of observational and theoretical programs that could clarify the nature of AU structures. TSAS and TSIS probe spatial scales in the range of what is expected for turbulent dissipation scales and are therefore of key importance for constraining exotic and not-well-understood physical processes that have implications for many areas of astrophysics. The emerging picture is one in which a magnetized, turbulent cascade, driven hard by a local energy source and acting jointly with phenomena such as thermal instability, is the source of these microstructures. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. Modelling the Turbulent Magnetized ISM
- Author
-
Korpi, Maarit J., de Avillez, Miguel A., editor, and Breitschwerdt, Dieter, editor
- Published
- 2004
- Full Text
- View/download PDF
4. Particle acceleration in winds of star clusters
- Author
-
Morlino, G., Blasi, P., Peretti, E., Cristofari, P., Morlino, G., Blasi, P., Peretti, E., and Cristofari, P.
- Abstract
The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant (SNR) shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover, the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here, we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters' winds in the interstellar medium. While the main limitation to the maximum energy in SNRs comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream is guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions, the spectrum of the accelerated particles has a power-law shape with a slope 4/4.3, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy.
- Published
- 2021
5. Particle acceleration in winds of star clusters
- Author
-
Giovanni Morlino, Enrico Peretti, P. Cristofari, and P. Blasi
- Subjects
Shock wave ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,ENERGY ,cosmic rays ,star clusters: general [galaxies] ,INTERSTELLAR TURBULENCE ,Supernova remnant ,SUPERBUBBLES ,Astrophysics::Galaxy Astrophysics ,acceleration of particles ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,SUPERNOVA-REMNANTS ,BUBBLES ,MAGNETIC-FIELD ,GAMMA-RAYS ,Astronomy and Astrophysics ,shock waves ,COSMIC-RAYS ,Galaxy ,SHOCK ACCELERATION ,Particle acceleration ,Interstellar medium ,Supernova ,Space and Planetary Science ,Astrophysics - High Energy Astrophysical Phenomena ,EMISSION ,Heliosphere - Abstract
The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters' winds in the interstellar medium. While the main limitation to the maximum energy in supernova remnants comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream in guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions the spectrum of the accelerated particles has a power law shape with a slope $4\div 4.3$, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy., Comment: 11 pages, 5 figures, submitted to MNRAS, comments welcome
- Published
- 2021
- Full Text
- View/download PDF
6. Non-linear Guiding Center Theory and Acceleration of Cosmic Rays at Supernova Remnant Shocks.
- Author
-
Li, G., Webb, G., Shalchi, A., and Zank, G. P.
- Subjects
- *
SUPERNOVA remnants , *SPACE environment , *ASTROPHYSICAL radiation , *COSMIC rays , *MAGNETOHYDRODYNAMIC waves , *MAGNETOHYDRODYNAMICS - Abstract
Supernova Remnant shocks have long been identified as the major site of cosmic ray acceleration. At the shock front, cosmic rays traverse upstream and downstream multiple times and gain energies up to 1013–14 eV and perhaps even reach 1018 eV. The maximum achievable energy at a SNR shock is decided by many factors. Among these, shock geometry is an important one. Using a simple quasi-linear theory, Jokipii [1] showed that the acceleration rate at a perpendicular shock can be orders of magnitude faster than that at a quasi-parallel shock. Consequently, high energy cosmic rays are produced at quasi-perpendicular portion of a SNR shock. The perpendicular diffusion coefficient used in Jokipii [1], however, do not agree with careful numerical calculations. In this paper, we discuss cosmic ray acceleration at SNR shock using the Non Linear Guiding Center (NLGC) Theory for κ⊥. We show that at an oblique shock, the generation of Alfven waves along the upstream magnetic field direction will reduce κ|, which is coupled to κ⊥ through the NLGC theory. We find that depending on the properties of the interstellar MHD turbulence, the fastest acceleration rate can occur at an oblique shock. The implication of our result to the X-ray observations of SNR is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
7. The structure and statistics of interstellar turbulence
- Author
-
A G Kritsuk, S D Ustyugov, and M L Norman
- Subjects
MHD turbulence ,interstellar turbulence ,interstellar clouds ,star formation ,47.27.–i ,47.27.E– ,Science ,Physics ,QC1-999 - Abstract
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable H i , the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
- Published
- 2017
- Full Text
- View/download PDF
8. La formation du gaz dense à l'origine des étoiles de faible et de haute masse
- Author
-
Bonne, Lars, FORMATION STELLAIRE 2020, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Sylvain Bontemps, and Nicola Schneider
- Subjects
Dynamics of the interstellar medium ,Massive protostars ,Turbulence interstellaire ,Star formation ,La dynamique du milieu interstellaire ,Chocs interstellaires ,Interstellar shocks ,Protoétoiles massives ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Interstellar turbulence ,Formation des étoiles - Abstract
To understand how stars can form in the interstellar medium (ISM), it has to be understood how cold (~ 10 K) and dense gas (> 10^{4} cm^{-3}) can emerge during the evolution of the ISM. With the Herschel telescope it was found that most of this dense star forming gas is organised in filamentary structures.To understand how this dense filamentary gas forms, multiple CO transitions were observed towards the Musca filament, which can form low-mass stars, using the APEX telescope. These observations were complemented with [CII] and [OI] observations by the SOFIA telescope. The non-detection of [CII] demonstrates that the Musca cloud is embedded in a weak FUV field (< 1 G0). However, the observed CO(4-3) line with APEX demonstrates the presence of warm (> 50 K) CO gas around the Musca filament which cannot be explained with heating by the FUV radiation field. A comparison of the observed CO(4-3) emission with shock models shows that the emission can be the result of a low-velocity (< 4 km/s) J-type shock. Further analysis of this emission demonstrates that this shock emission resembles the signature of a shock responsible for mass accretion on a filament. This suggests that a low-velocity shock as a result of continuous mass accretion is responsible for the formation of cold and dense gas that can form stars in the Musca filament.The accretion scenario for Musca is further analysed with low-J CO observations from APEX and NANTEN2 to study the large scale gas kinematics. These observations unveil a velocity gradient over the Musca filament crest which is correlated with the velocity field of the nearby ambient gas. This suggests that the velocity gradient is the result of mass accretion from the ambient cloud. Analysing the full Musca cloud demonstrates a spatial and kinematic asymmetry from low- to high-density gas. This asymmetry is seen as a V-shape in the position-velocity (PV) diagram perpendicular to the Musca filament. Including atomic hydrogen (HI) observations in the analysis first of all confirms that Musca is part of a larger HI cloud, the Chamaeleon-Musca complex. It also demontrates that the kinematic asymmetry is seen from the HI cloud down to the filament crest. Furthermore, the CO-HI asymmetry is found for basically all dense regions (Cha I, Cha II, Cha III and Musca) with archival data of Chamaeleon-Musca, while HI shows indications of more than one velocity component. This asymmetric accretion scenario is predicted by magnetised cloud-cloud collision simulations, where the bending of the magnetic field is responsible the observed asymmetric accretion scenario. The filament formation in Musca is thus the result of two intersecting converging flows which are driven by the magnetic field bending due to a large-scale colliding HI flow that triggered the observed star formation in the full Chamaeleon-Musca complex.Finally, the kinematics of the high-mass star forming ridge DR21 and its surrounding gas are studied to compare low- and high-mass star formation. This shows a similar spatial and kinematic asymmetry as in Musca, which suggests that DR21 is formed by a giant molecular cloud (GMC) collision. However, it is also found for high-mass star formation in the DR21 cloud that gravity plays an important role on large scales (> 1 pc) while for Musca gravity only starts to dominate locally (r < 0.1-0.2 pc). So, due to the high density in the DR21 cloud after the GMC collision, gravity eventually drives the evolution of the compressed cloud for high-mass star forming regions. Kinematic observations of the full Cygnus-X north region show further indications of two interacting velocity components over the entire region, which indicates that a high-velocity (> 10 km/s) GMC collision can result in the formation of an OB association similar to OB2. These OB stars then form in gravitationally collapsing hubs and ridges due to the compression by the GMC collision.; Pour comprendre la formation des étoiles, il faut étudier les processus physiques qui forment le gaz froid et dense dans le milieu interstellaire. Le télescope spatial Herschel a récemment démontré que la majorité du gaz froid et dense est formée de structures filamentaires (des filaments).Dans cette thèse, plusieurs raies de CO ont été observées avec le télescope APEX autour du filament de Musca. Ces observations ont été complémentées par des observations [CII] et [OI] avec le télescope SOFIA. La non-détection de [CII] démontre que le nuage de Musca est situé dans un champ de radiation UV faible (1 G0). Par contre, les observations de CO(4-3) avec APEX montrent qu'il y a du gaz CO chauffé (> 50 K) autour du filament que l'irradiation UV ne peut pas expliquer. La comparaison avec des modèles de chocs indique que l'émission CO(4-3) doit alors être le résultat d'un choc J à basse vitesse (< 4 km/s). L'analyse du spectre CO(4-3) montre aussi que l'émission venant du choc ressemble à une signature de choc d'accrétion. Cette observation suggère qu'un choc à basse vitesse, dû à une accrétion continue, est responsable de la formation du gaz dense et froid du filament de Musca.Ce scénario d'accrétion du filament de Musca est de plus étudié à grandes échelles dans les raies CO(2-1) et CO(1-0) obtenues avec les télescopes APEX et NANTEN2. Ces observations montrent un gradient de vitesse sur la crête de Musca qui est correlé avec le champ de vitesse autour du filament. L'analyse globale des observations de Musca montre une asymétrie à la fois spatiale et cinématique. Cette asymétrie est vue comme une forme en V dans le diagramme position-vitesse perpendiculaire au filament. L'inclusion d'observations du gaz neutre HI dans l'analyse confirme que Musca fait partie d'un nuage HI plus grand, le complex Chamaeleon-Musca. Le HI montre aussi que l'asymétrie cinématique est présente des grandes échelles du nuage HI jusqu'aux petites échelles de la crête du filament de Musca. En comparant le HI avec les vitesses CO de Cha I, Cha II et Cha III, on constate que l'asymétrie cinématique est présente pour toutes les régions denses du complexe de Chamaeleon-Musca. Ce scénario d'accrétion asymétrique, qui est observé, est reproduit dans des simulations d'une collision de nuages magnétisés. Dans ce scénario, c'est la déformation du champ magnétique qui est responsable de l'accrétion asymétrique. La formation du filament Musca serait ainsi due à la convergence de deux flots de matière guidée par la courbure du champ magnétique provoquée par la collision des nuages HI à grande échelle.Dans la dernière partie, la cinématique du nuage massif DR21, qui forme des étoiles massives, est étudiée pour comparer la formation des étoiles massives à celle des étoiles de faible masse. Le nuage DR21 montre une asymétrie en V similaire à celle de Musca, ce qui indique que le nuage DR21 est aussi formé par une collision de nuages moléculaires mais avec une vitesse de collision plus importante que pour Musca. Les observations indiquent de plus que la formation des étoiles massives dans le nuage DR21 serait la conséquence directe de la prédominance de la gravité à grande échelle (> 1 pc) du gaz dense en contraste avec Musca pour lequel la gravité ne dominerait qu'aux plus petites échelles (< 0.1-0.2 pc). L'analyse cinématique globale de toute la région du Cygne montre que toute la région résulte de la même collision de nuages. Cette observation indique que c'est une collision de nuages à grande vitesse (> 10 km/s) qui pourrait expliquer la formation d'une association d'étoiles OB de plusieurs milliers d'étoiles. Dans ce scénario, les étoiles massives (OB) se formeraient dans les structures denses et massives (hubs et ridges) formées aux convergences dues à la collision à grande vitesse de nuages, et où la gravité à grande échelles domine la cinématique et l'évolution du gaz dense.
- Published
- 2020
9. Interstellar Turbulence
- Author
-
Charnley, Steven B., Gargaud, Muriel, editor, Amils, Ricardo, editor, Quintanilla, José Cernicharo, editor, Cleaves, Henderson James (Jim), II, editor, Irvine, William M., editor, Pinti, Daniele L., editor, and Viso, Michel, editor
- Published
- 2011
- Full Text
- View/download PDF
10. Global simulations of galactic discs:violent feedback from clustered supernovae during bursts of star formation
- Author
-
Martizzi, Davide and Martizzi, Davide
- Abstract
A suite of idealized, global, gravitationally unstable, star-forming galactic disc simulations with 2 pc spatial resolution, performed with the adaptive mesh refinement code RAMSES, is used in this paper to predict the emergent effects of supernova feedback. The simulations include a simplified prescription for the formation of single stellar populations of mass similar to 100M(circle dot), radiative cooling, photoelectric heating, an external gravitational potential for a dark matter halo and an old stellar disc, self-gravity, and a novel implementation of supernova feedback. The results of these simulations show that gravitationally unstable discs can generate violent supersonic winds with mass-loading factors eta greater than or similar to 10, followed by a galactic fountain phase. These violent winds are generated by highly clustered supernovae exploding in dense environments created by gravitational instability, and they are not produced in simulation without self-gravity. The violent winds significantly perturb the vertical structure of the disc, which is later re-established during the galactic fountain phase. Gas resettles into a quasisteady, highly turbulent disc with volume-weighted velocity dispersion sigma > 50 km s(-1). The new configuration drives weaker galactic winds with a mass-loading factor eta
- Published
- 2020
11. Winds in Star Clusters Drive Kolmogorov Turbulence
- Author
-
Gallegos-Garcia, Monica, Burkhart, Blakesley, Rosen, Anna L., Naiman, Jill P., Ramirez-Ruiz, Enrico, Gallegos-Garcia, Monica, Burkhart, Blakesley, Rosen, Anna L., Naiman, Jill P., and Ramirez-Ruiz, Enrico
- Abstract
Intermediate and massive stars drive fast and powerful isotropic winds that interact with the winds of nearby stars in star clusters and the surrounding interstellar medium (ISM). Wind-ISM collisions generate astrospheres around these stars that contain hotT similar to 10(7)K gas that adiabatically expands. As individual bubbles expand and collide they become unstable, potentially driving turbulence in star clusters. In this Letter we use hydrodynamic simulations to model a densely populated young star cluster within a homogeneous cloud to study stellar wind collisions with the surrounding ISM. We model a mass-segregated cluster of 20 B-type young main-sequence stars with masses ranging from 3 to 17M. We evolve the winds for similar to 11 kyr and show that wind-ISM collisions and overlapping wind-blown bubbles around B-stars mix the hot gas and ISM material, generating Kolmogorov-like turbulence on small scales early in its evolution. We discuss how turbulence driven by stellar winds may impact the subsequent generation of star formation in the cluster.
- Published
- 2020
12. AMBIPOLAR DIFFUSION AND TURBULENT MAGNETIC FIELDS IN MOLECULAR CLOUDS.
- Author
-
HOUDE, MARTIN, HEZAREH, TALAYEH, LI, HUA-BAI, and PHILLIPS, THOMAS G.
- Subjects
- *
MOLECULAR clouds , *INTERSTELLAR magnetic fields , *TURBULENCE , *CYCLOTRONS , *DIFFUSION , *IONIZED gases , *IONS - Abstract
We review the introduction and development of a novel method for the characterization of magnetic fields in star-forming regions. The technique is based on the comparison of spectral line profiles from coexistent neutral and ion molecular species commonly detected in molecular clouds, sites of star formation. Unlike other methods used to study magnetic fields in the cold interstellar medium, this ion/neutral technique is not based on spin interactions with the field. Instead, it relies on and takes advantage of the strong cyclotron coupling between the ions and magnetic fields, thus exposing what is probably the clearest observational manifestation of magnetic fields in the cold, weakly ionized gas that characterizes the interior of molecular clouds. We will show how recent development and modeling of the ensuing ion line narrowing effect leads to a determination of the ambipolar diffusion scale involving the turbulent component of magnetic fields in star-forming regions, as well as the strength of the ordered component of the magnetic field. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
13. Non-linear diffusion of cosmic rays
- Author
-
Ptuskin, V.S., Zirakashvili, V.N., and Plesser, A.A.
- Subjects
- *
SPACE environment , *ASTROPHYSICAL radiation , *RADIOACTIVITY , *COSMIC rays - Abstract
Abstract: The propagation of cosmic rays in the interstellar medium after their release from the sources – supernova remnants – can be attended by the development of streaming instability. The instability creates MHD turbulence that changes the conditions of particle transport and leads to a non-linear diffusion of cosmic rays. We present a self-similar solution of the equation of non-linear diffusion for particles ejected from a SNR and discuss how obtained results may change the physical picture of cosmic ray propagation in the Galaxy. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
14. Turbulence in the molecular interstellar medium.
- Author
-
Heyer, Mark H. and Brunt, Chris
- Abstract
The observational record of turbulence within the molecular gas phase of the interstellar medium is summarized. We briefly review the analysis methods used to recover the velocity structure function from spectroscopic imaging and the application of these tools on sets of cloud data. These studies identify a near-invariant velocity structure function that is independent of the local environment and star formation activity. Such universality accounts for the cloud-to-cloud scaling law between the global line-width and size of molecular clouds found by Larson (1981) and constrains the degree to which supersonic turbulence can regulate star formation. In addition, the evidence for large scale driving sources necessary to sustain supersonic flows is summarized. [ABSTRACT FROM PUBLISHER]
- Published
- 2006
- Full Text
- View/download PDF
15. Winds in Star Clusters Drive Kolmogorov Turbulence
- Author
-
Enrico Ramirez-Ruiz, Anna L. Rosen, Blakesley Burkhart, Monica Gallegos-Garcia, and Jill Naiman
- Subjects
MHD TURBULENCE ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,CODE ,FOS: Physical sciences ,B stars ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,HYDRODYNAMICS ,Interstellar medium ,0103 physical sciences ,Cluster (physics) ,Astrophysics::Solar and Stellar Astrophysics ,INTERSTELLAR TURBULENCE ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,BUBBLES ,Turbulence ,Star formation ,NUMERICAL SIMULATIONS ,Isotropy ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Stars ,Star cluster ,GAS ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,SUPERNOVA FEEDBACK ,DENSITY ,Star clusters ,IONIZATION ,Astrophysics::Earth and Planetary Astrophysics ,Main sequence - Abstract
Intermediate and massive stars drive fast and powerful isotropic winds that interact with the winds of nearby stars in star clusters and the surrounding interstellar medium (ISM). Wind-ISM collisions generate astrospheres around these stars that contain hot $T\sim 10^7$ K gas that adiabatically expands. As individual bubbles expand and collide they become unstable, potentially driving turbulence in star clusters. In this paper we use hydrodynamic simulations to model a densely populated young star cluster within a homogeneous cloud to study stellar wind collisions with the surrounding ISM. We model a mass-segregated cluster of 20 B-type young main sequence stars with masses ranging from 3--17 $M_{\odot}$. We evolve the winds for $\sim$11 kyrs and show that wind-ISM collisions and over-lapping wind-blown bubbles around B-stars mixes the hot gas and ISM material generating Kolmogorov-like turbulence on small scales early in its evolution. We discuss how turbulence driven by stellar winds may impact the subsequent generation of star formation in the cluster, 12 pages, 5 figures, Accepted for publication in ApJL
- Published
- 2020
- Full Text
- View/download PDF
16. Global Simulations of Galactic Discs: Violent Feedback from Clustered Supernovae during Bursts of Star Formation
- Author
-
Davide Martizzi
- Subjects
DWARF GALAXIES ,Radiative cooling ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,DARK ,Gravitational potential ,Astrophysics::Solar and Stellar Astrophysics ,Supersonic speed ,INTERSTELLAR TURBULENCE ,evolution [galaxies] ,Astrophysics::Galaxy Astrophysics ,DRIVEN ISM ,Physics ,Star formation ,Velocity dispersion ,numerical [methods] ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,EVOLUTION ,Galaxy ,Dark matter halo ,Supernova ,STELLAR FEEDBACK ,Space and Planetary Science ,DENSITY ,Astrophysics of Galaxies (astro-ph.GA) ,hydrodynamics ,MOLECULAR CLOUDS ,GALAXY FORMATION ,Astrophysics::Earth and Planetary Astrophysics ,MATTER ,general [galaxies] - Abstract
A suite of idealised, global, gravitationally unstable, star-forming galactic disc simulations with 2 pc spatial resolution, performed with the adaptive mesh refinement code {\sc ramses} is used in this paper to predict the emergent effects of supernova feedback. The simulations include a simplified prescriptions for formation of single stellar populations of mass $\sim 100 \, M_{\odot}$, radiative cooling, photoelectric heating, an external gravitational potential for a dark matter halo and an old stellar disc, self-gravity, and a novel implementation of supernova feedback. The results of these simulations show that gravitationally unstable discs can generate violent supersonic winds with mass loading factors $\eta \gtrsim 10$, followed by a galactic fountain phase. These violent winds are generated by highly clustered supernovae exploding in dense environments created by gravitational instability, and they are not produced in simulation without self-gravity. The violent winds significantly perturb the vertical structure of the disc, which is later re-established during the galactic fountain phase. Gas resettles into a quasi-steady, highly turbulent disc with volume-weighted velocity dispersion $\sigma > 50 \, {\rm km/s}$. The new configuration drives weaker galactic winds with mass loading factor $\eta \leq 0.1$. The whole cycle takes place in $\leq 10$ dynamical times. Such high time variability needs to be taken into account when interpreting observations of galactic winds from starburst and post-starburst galaxies., Comment: 17 pages, accepted by MNRAS
- Published
- 2019
- Full Text
- View/download PDF
17. Driving Galactic Turbulence by Supernova Explosions.
- Author
-
Korpi, Maarit, Brandenburg, A., and Tuominen, I.
- Abstract
We investigate the general properties of supernova driven interstellar turbulence using local three-dimensional MHD simulations under Galactic conditions. Our model includes the effects of large-scale shear due to Galactic differential rotation, density stratification, compressibility, magnetic fields, heating via supernova explosions and parameterized radiative cooling of the interstellar medium. In addition to investigating isolated supernova explosions we allow for multiple supernovae distributed randomly in the Galactic disc and exponentially in the vertical direction. Single supernova explosions drive a strong shock, the lifetime of which is approximately 2 Myr in our model. This stage is found to be characterized by a kinetic energy spectrum in the diffuse gas with spectral index consistent with k = −2. Large-scale shear and Coriolis force act on the supernova remnant producing some vorticity inside it, but this process was found to be very weak. In the case of multiple supernova explosions, older remnants have an important role causing density fluctuations in the interstellar medium. In this “clumpy” medium, the propagation velocity of the shock fronts changes due to the changing density, and vorticity is generated. In the absence of these supernova interactions the kinetic energy spectrum shows a relatively wide shock spectrum with spectral index k = −2, but when the supernova interactions become dominant the classical k = −5/3 spectrum is observed. [ABSTRACT FROM AUTHOR]
- Published
- 1998
- Full Text
- View/download PDF
18. Galactic Spiral Arms and Dynamo Control Parameters.
- Author
-
Shukurov, A. and Sokoloff, D.
- Abstract
We discuss the effects of galactic spiral arms on the α-coefficient, turbulent diffusivity and turbulent energy density of the interstellar turbulence. We argue that the α-coefficient and the dynamo number are larger in the interarm regions, whereas the kinetic energy density of turbulence is larger in the arms; the turbulent magnetic diffusivity can be only weakly affected by the spiral pattern. [ABSTRACT FROM AUTHOR]
- Published
- 1998
- Full Text
- View/download PDF
19. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Alina, D., Alves, M. I. R., Armitage-Caplan, C., Arnaud, M., Arzoumanian, D., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., BURIGANA, CARLO, Butler, R. C., Cardoso, J. -F., Catalano, A., Chamballu, A., Chary, R. -R., Chiang, H. C., Christensen, P. R., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., CUTTAIA, FRANCESCO, Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Gouveia Dal Pino, E. M., De Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Dickinson, C., Diego, J. M., Donzelli, S., Doré, O., Douspis, M., Dunkley, J., Dupac, X., Efstathiou, G., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Ferrière, K., FINELLI, FABIO, Forni, O., FRAILIS, Marco, Fraisse, A. A., FRANCESCHI, ENRICO, GALEOTTA, Samuele, Ganga, K., Ghosh, T., Giard, M., Giraud-Héraud, Y., González-Nuevo, J., Górski, K. M., Gregorio, A., GRUPPUSO, ALESSANDRO, Guillet, V., Hansen, F. K., Harrison, D. L., Helou, G., Hernández-Monteagudo, C., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lawrence, C. R., Leahy, J. P., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Magalhães, A. M., Maino, D., Mandolesi, N., MARIS, Michele, Marshall, D. J., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Mazzotta, P., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Moneti, A., Montier, L., MORGANTE, GIANLUCA, Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paladini, R., PAOLETTI, DANIELA, Pasian, F., Pearson, T. J., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pietrobon, D., Plaszczynski, S., Poidevin, F., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., RICCIARDI, SARA, Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., SANDRI, MAURA, Savini, G., Scott, D., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., TERENZI, LUCA, Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., UMANA, Grazia Maria Gloria, VALENZIANO, LUCA, Valiviita, J., Van Tent, B., Vielva, P., VILLA, FABRIZIO, Wade, L. A., Wandelt, B. D., ZACCHEI, Andrea, Zonca, A., AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), PLANCK, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Ade, P, Aghanim, N, Alina, D, Alves, M, Armitage Caplan, C, Arnaud, M, Arzoumanian, D, Ashdown, M, Atrio Barandela, F, Aumont, J, Baccigalupi, C, Banday, A, Barreiro, R, Battaner, E, Benabed, K, Benoit Lévy, A, Bernard, J, Bersanelli, M, Bielewicz, P, Bock, J, Bond, J, Borrill, J, Bouchet, F, Boulanger, F, Bracco, A, Burigana, C, Butler, R, Cardoso, J, Catalano, A, Chamballu, A, Chary, R, Chiang, H, Christensen, P, Colombi, S, Colombo, L, Combet, C, Couchot, F, Coulais, A, Crill, B, Curto, A, Cuttaia, F, Danese, L, Davies, R, Davis, R, DE BERNARDIS, P, De Gouveia Dal Pino, E, De Rosa, A, De Zotti, G, Delabrouille, J, Désert, F, Dickinson, C, Diego, J, Donzelli, S, Doré, O, Douspis, M, Dunkley, J, Dupac, X, Efstathiou, G, Enßlin, T, Eriksen, H, Falgarone, E, Ferrière, K, Finelli, F, Forni, O, Frailis, M, Fraisse, A, Franceschi, E, Galeotta, S, Ganga, K, Ghosh, T, Giard, M, Giraud Héraud, Y, González Nuevo, J, Górski, K, Gregorio, A, Gruppuso, A, Guillet, V, Hansen, F, Harrison, D, Helou, G, Hernández Monteagudo, C, Hildebrandt, S, Hivon, E, Hobson, M, Holmes, W, Hornstrup, A, Huffenberger, K, Jaffe, A, Jaffe, T, Jones, W, Juvela, M, Keihänen, E, Keskitalo, R, Kisner, T, Kneissl, R, Knoche, J, Kunz, M, Kurki Suonio, H, Lagache, G, Lähteenmäki, A, Lamarre, J, Lasenby, A, Lawrence, C, Leahy, J, Leonardi, R, Levrier, F, Liguori, M, Lilje, P, Linden Vørnle, M, López Caniego, M, Lubin, P, Macías Pérez, J, Maffei, B, Magalhães, A, Maino, D, Mandolesi, N, Maris, M, Marshall, D, Martin, P, Martínez González, E, Masi, S, Matarrese, S, Mazzotta, P, Melchiorri, A, Mendes, L, Mennella, A, Migliaccio, M, Miville Deschênes, M, Moneti, A, Montier, L, Morgante, G, Mortlock, D, Munshi, D, Murphy, J, Naselsky, P, Nati, F, Natoli, P, Netterfield, C, Noviello, F, Novikov, D, Novikov, I, Oxborrow, C, Pagano, L, Pajot, F, Paladini, R, Paoletti, D, Pasian, F, Pearson, T, Perdereau, O, Perotto, L, Perrotta, F, Piacentini, F, Piat, M, Pietrobon, D, Plaszczynski, S, Poidevin, F, Pointecouteau, E, Polenta, G, Popa, L, Pratt, G, Prunet, S, Puget, J, Rachen, J, Reach, W, Rebolo, R, Reinecke, M, Remazeilles, M, Renault, C, Ricciardi, S, Riller, T, Ristorcelli, I, Rocha, G, Rosset, C, Roudier, G, Rubiño Martín, J, Rusholme, B, Sandri, M, Savini, G, Scott, D, Spencer, L, Stolyarov, V, Stompor, R, Sudiwala, R, Sutton, D, Suur Uski, A, Sygnet, J, Tauber, J, Terenzi, L, Toffolatti, L, Tomasi, M, Tristram, M, Tucci, M, Umana, G, Valenziano, L, Valiviita, J, Van Tent, B, Vielva, P, Villa, F, Wade, L, Wandelt, B, Zacchei, A, Zonca, A, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Ministerio de Ciencia e Innovación (España), Consejo Superior de Investigaciones Científicas (España), Junta de Andalucía, European Research Council, European Commission, Universidade de São Paulo, Department of Physics, Helsinki Institute of Physics, Anne Lähteenmäki Group, Department of Radio Science and Engineering, Aalto-yliopisto, Aalto University, ITA, USA, GBR, FRA, DEU, ESP, Ade, P. A. R., Aghanim, N., Alina, D., Alves, M. I. R., Armitage Caplan, C., Arnaud, M., Arzoumanian, D., Ashdown, M., Atrio Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoit Lévy, A., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Burigana, C., Butler, R. C., Cardoso, J. F., Catalano, A., Chamballu, A., Chary, R. R., Chiang, H. C., Christensen, P. R., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., De Bernardis, P., De Gouveia Dal Pino, E. M., De Rosa, A., De Zotti, G., Delabrouille, J., Désert, F. X., Dickinson, C., Diego, J. M., Donzelli, S., Doré, O., Douspis, M., Dunkley, J., Dupac, X., Efstathiou, G., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Ferrière, K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Ghosh, T., Giard, M., Giraud Héraud, Y., González Nuevo, J., Górski, K. M., Gregorio, Anna, Gruppuso, A., Guillet, V., Hansen, F. K., Harrison, D. L., Helou, G., Hernández Monteagudo, C., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. M., Lasenby, A., Lawrence, C. R., Leahy, J. P., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden Vørnle, M., López Caniego, M., Lubin, P. M., Macías Pérez, J. F., Maffei, B., Magalhães, A. M., Maino, D., Mandolesi, N., Maris, M., Marshall, D. J., Martin, P. G., Martínez González, E., Masi, S., Matarrese, S., Mazzotta, P., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Miville Deschênes, M. A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paladini, R., Paoletti, D., Pasian, F., Pearson, T. J., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pietrobon, D., Plaszczynski, S., Poidevin, F., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prunet, S., Puget, J. L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rubiño Martín, J. A., Rusholme, B., Sandri, M., Savini, G., Scott, D., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sutton, D., Suur Uski, A. S., Sygnet, J. F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Zacchei, A., and Zonca, A.
- Subjects
magnetic field [ISM] ,EXTRAGALACTIC SOURCES ,Astronomy ,cloud [ISM] ,Dust, extinction ,ISM: clouds ,ISM: general ,ISM: magnetic fields ,Submillimeter: ISM ,Astronomy and Astrophysics ,Space and Planetary Science ,[ISM] ,Astrophysics ,clouds ,7. Clean energy ,Radiative transfer ,INTERSTELLAR TURBULENCE ,SOUTHERN SKY ,extinction / ISM: magnetic fields / ISM: clouds / submillimeter: ISM ,QB ,Physics ,general [ISM] ,extinction ,Dust ,Polarization (waves) ,Magnetic field ,ROTATION MEASURES ,symbols ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Polar ,dust ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,dust [ISM] ,clouds [ISM] ,NUVENS ,GRAIN ALIGNMENT ,ISM: general / dust ,FOS: Physical sciences ,Cosmic ray ,1.4 GHZ ,Astrophysics::Cosmology and Extragalactic Astrophysics ,NO ,symbols.namesake ,ISM: magnetic field ,Settore FIS/05 - Astronomia e Astrofisica ,ISM: cloud ,Faraday effect ,RADIATIVE TORQUE ALIGNMENT ,Planck ,FORMING MOLECULAR CLOUDS ,ISM [submillimeter] ,Astrophysics::Galaxy Astrophysics ,Brewster's angle ,magnetic fields [ISM] ,Astronomy and Astrophysic ,115 Astronomy, Space science ,Astrophysics - Astrophysics of Galaxies ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics of Galaxies (astro-ph.GA) ,PROBE WMAP OBSERVATIONS ,MAGNETIC-FIELD GEOMETRY - Abstract
et al., This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight., The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/M CTES (Portugal); and PRACE (EU). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement no 267934 and from a joint agreement between University of São Paulo, Brazil, and COFECUB, France (grant nos. USP 2007.1.433.14.2 and COFECUB Uc Te 114/08).
- Published
- 2015
- Full Text
- View/download PDF
20. Weak and Strong MHD Turbulence
- Author
-
G. Gogoberidze, S. Mahajan, S. Poedts, M. Akhalkatsi, Ivan Zhelyazkov, Todor Mishonov, Zhelyazkov, I, and Zhelyazkov, I.
- Subjects
ANISOTROPY ,Physics ,Science & Technology ,K-epsilon turbulence model ,Turbulence ,Wave turbulence ,Turbulence modeling ,Direct numerical simulation ,K-omega turbulence model ,Magnetohydrodynamic turbulence ,SIMULATIONS ,Nonlinear Sciences::Chaotic Dynamics ,Physics::Fluid Dynamics ,Physics, Fluids & Plasmas ,turbulence modeling ,Physical Sciences ,Physics::Space Physics ,Turbulence kinetic energy ,ALFVENIC TURBULENCE ,MAGNETOHYDRODYNAMIC TURBULENCE ,INTERSTELLAR TURBULENCE ,Statistical physics - Abstract
The general conditions for the weak and strong regimes of incompressible magnetohydrodynamic turbulence are derived and studied in the framework of the direct interaction approximation. It is shown that in the framework of the weak turbulence theory, the autocorrelation and cascade timescales are always of the same order of magnitude. This means that, contrary to the general belief, any model of turbulence which implies a large number of collisions among wave packets for an efficient energy cascade (such as the Iroshnikov–Kraichnan model), does not represent a model of weak turbulence.
- Published
- 2011
- Full Text
- View/download PDF
21. Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit
- Author
-
Robi Banerjee, Dominik R. G. Schleicher, Rainer Beck, Marco Spaans, Ralf S. Klessen, Tigran G. Arshakian, Sharanya Sur, and Astronomy
- Subjects
Length scale ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,first stars ,FOS: Physical sciences ,Field strength ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,magnetic fields ,01 natural sciences ,stars: Population III ,SUPERMASSIVE BLACK-HOLES ,EARLY UNIVERSE ,COLLAPSING DENSE CORE ,0103 physical sciences ,Gravitational collapse ,PRIMORDIAL MAGNETIC-FIELDS ,dark ages, reionization, first stars ,INTERSTELLAR TURBULENCE ,dark ages ,ISOTHERMAL TURBULENCE ,010306 general physics ,3-FLUID PLASMAS ,010303 astronomy & astrophysics ,AMBIPOLAR DIFFUSION ,Astrophysics::Galaxy Astrophysics ,Physics ,stars: formation ,turbulence ,Astronomy and Astrophysics ,dynamo ,SIMULATIONS ,Accretion (astrophysics) ,Galaxy ,Magnetic field ,Space and Planetary Science ,reionization ,MAGNETOHYDRODYNAMIC TURBULENCE ,Magnetohydrodynamics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Dynamo - Abstract
We explore the amplification of magnetic seed fields during the formation of the first stars and galaxies. During gravitational collapse, turbulence is created from accretion shocks, which may act to amplify weak magnetic fields in the protostellar cloud. Numerical simulations showed that such turbulence is sub-sonic in the first star-forming minihalos, and highly supersonic in the first galaxies with virial temperatures larger than 10^4 K. We investigate the magnetic field amplification during the collapse both for Kolmogorov and Burgers-type turbulence with a semi-analytic model that incorporates the effects of gravitational compression and small-scale dynamo amplification. We find that the magnetic field may be substantially amplified before the formation of a disk. On scales of 1/10 of the Jeans length, saturation occurs after ~10^8 yr. Although the saturation behaviour of the small-scale dynamo is still somewhat uncertain, we expect a saturation field strength of the order ~10^{-7} n^{0.5} G in the first star-forming halos, with n the number density in cgs units. In the first galaxies with higher turbulent velocities, the magnetic field strength may be increased by an order of magnitude, and saturation may occur after 10^6 to 10^7 yr. In the Kolmogorov case, the magnetic field strength on the integral scale (i.e. the scale with most magnetic power) is higher due to the characteristic power-law indices, but the difference is less than a factor of 2 in the saturated phase. Our results thus indicate that the precise scaling of the turbulent velocity with length scale is of minor importance. They further imply that magnetic fields will be significantly enhanced before the formation of a protostellar disk, where they may change the fragmentation properties of the gas and the accretion rate., Comment: 11 pages, 9 figures, accepted at A&A
- Published
- 2010
- Full Text
- View/download PDF
22. Voyager observations of magnetic field turbulence in the far heliosheath and in the local interstellar medium. Power spectra from high-resolution data
- Author
-
Daniela Tordella, Federico Fraternale, Michele Iovieno, and Richardson, John D.
- Subjects
Solar wind ,helioshpere ,waves ,Solar wind, Interstellar turbulence, spectral analysis, waves, helioshpere, heliosheath ,heliosheath ,spectral analysis ,Interstellar turbulence
23. La formation du gaz dense à l'origine des étoiles de faible et de haute masse
- Author
-
Bonne, Lars, Sylvain Bontemps, Nicola Schneider, Fabrice Herpin [Président], Arnaud Belloche [Rapporteur], Ralf S. Klessen [Rapporteur], Isabelle Grenier, Isabelle Ristorcelli, Bontemps, Sylvain, Schneider, Nicola, Herpin, Fabrice, Belloche, Arnaud, Klessen, Ralf S., Grenier, Isabelle, Ristorcelli, Isabelle, FORMATION STELLAIRE 2020, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, and STAR, ABES
- Subjects
Dynamics of the interstellar medium ,Massive protostars ,Turbulence interstellaire ,Star formation ,La dynamique du milieu interstellaire ,Chocs interstellaires ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Interstellar shocks ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Protoétoiles massives ,Interstellar turbulence ,Formation des étoiles - Abstract
To understand how stars can form in the interstellar medium (ISM), it has to be understood how cold (~ 10 K) and dense gas (> 10^{4} cm^{-3}) can emerge during the evolution of the ISM. With the Herschel telescope it was found that most of this dense star forming gas is organised in filamentary structures.To understand how this dense filamentary gas forms, multiple CO transitions were observed towards the Musca filament, which can form low-mass stars, using the APEX telescope. These observations were complemented with [CII] and [OI] observations by the SOFIA telescope. The non-detection of [CII] demonstrates that the Musca cloud is embedded in a weak FUV field (< 1 G0). However, the observed CO(4-3) line with APEX demonstrates the presence of warm (> 50 K) CO gas around the Musca filament which cannot be explained with heating by the FUV radiation field. A comparison of the observed CO(4-3) emission with shock models shows that the emission can be the result of a low-velocity (< 4 km/s) J-type shock. Further analysis of this emission demonstrates that this shock emission resembles the signature of a shock responsible for mass accretion on a filament. This suggests that a low-velocity shock as a result of continuous mass accretion is responsible for the formation of cold and dense gas that can form stars in the Musca filament.The accretion scenario for Musca is further analysed with low-J CO observations from APEX and NANTEN2 to study the large scale gas kinematics. These observations unveil a velocity gradient over the Musca filament crest which is correlated with the velocity field of the nearby ambient gas. This suggests that the velocity gradient is the result of mass accretion from the ambient cloud. Analysing the full Musca cloud demonstrates a spatial and kinematic asymmetry from low- to high-density gas. This asymmetry is seen as a V-shape in the position-velocity (PV) diagram perpendicular to the Musca filament. Including atomic hydrogen (HI) observations in the analysis first of all confirms that Musca is part of a larger HI cloud, the Chamaeleon-Musca complex. It also demontrates that the kinematic asymmetry is seen from the HI cloud down to the filament crest. Furthermore, the CO-HI asymmetry is found for basically all dense regions (Cha I, Cha II, Cha III and Musca) with archival data of Chamaeleon-Musca, while HI shows indications of more than one velocity component. This asymmetric accretion scenario is predicted by magnetised cloud-cloud collision simulations, where the bending of the magnetic field is responsible the observed asymmetric accretion scenario. The filament formation in Musca is thus the result of two intersecting converging flows which are driven by the magnetic field bending due to a large-scale colliding HI flow that triggered the observed star formation in the full Chamaeleon-Musca complex.Finally, the kinematics of the high-mass star forming ridge DR21 and its surrounding gas are studied to compare low- and high-mass star formation. This shows a similar spatial and kinematic asymmetry as in Musca, which suggests that DR21 is formed by a giant molecular cloud (GMC) collision. However, it is also found for high-mass star formation in the DR21 cloud that gravity plays an important role on large scales (> 1 pc) while for Musca gravity only starts to dominate locally (r < 0.1-0.2 pc). So, due to the high density in the DR21 cloud after the GMC collision, gravity eventually drives the evolution of the compressed cloud for high-mass star forming regions. Kinematic observations of the full Cygnus-X north region show further indications of two interacting velocity components over the entire region, which indicates that a high-velocity (> 10 km/s) GMC collision can result in the formation of an OB association similar to OB2. These OB stars then form in gravitationally collapsing hubs and ridges due to the compression by the GMC collision., Pour comprendre la formation des étoiles, il faut étudier les processus physiques qui forment le gaz froid et dense dans le milieu interstellaire. Le télescope spatial Herschel a récemment démontré que la majorité du gaz froid et dense est formée de structures filamentaires (des filaments).Dans cette thèse, plusieurs raies de CO ont été observées avec le télescope APEX autour du filament de Musca. Ces observations ont été complémentées par des observations [CII] et [OI] avec le télescope SOFIA. La non-détection de [CII] démontre que le nuage de Musca est situé dans un champ de radiation UV faible (1 G0). Par contre, les observations de CO(4-3) avec APEX montrent qu'il y a du gaz CO chauffé (> 50 K) autour du filament que l'irradiation UV ne peut pas expliquer. La comparaison avec des modèles de chocs indique que l'émission CO(4-3) doit alors être le résultat d'un choc J à basse vitesse (< 4 km/s). L'analyse du spectre CO(4-3) montre aussi que l'émission venant du choc ressemble à une signature de choc d'accrétion. Cette observation suggère qu'un choc à basse vitesse, dû à une accrétion continue, est responsable de la formation du gaz dense et froid du filament de Musca.Ce scénario d'accrétion du filament de Musca est de plus étudié à grandes échelles dans les raies CO(2-1) et CO(1-0) obtenues avec les télescopes APEX et NANTEN2. Ces observations montrent un gradient de vitesse sur la crête de Musca qui est correlé avec le champ de vitesse autour du filament. L'analyse globale des observations de Musca montre une asymétrie à la fois spatiale et cinématique. Cette asymétrie est vue comme une forme en V dans le diagramme position-vitesse perpendiculaire au filament. L'inclusion d'observations du gaz neutre HI dans l'analyse confirme que Musca fait partie d'un nuage HI plus grand, le complex Chamaeleon-Musca. Le HI montre aussi que l'asymétrie cinématique est présente des grandes échelles du nuage HI jusqu'aux petites échelles de la crête du filament de Musca. En comparant le HI avec les vitesses CO de Cha I, Cha II et Cha III, on constate que l'asymétrie cinématique est présente pour toutes les régions denses du complexe de Chamaeleon-Musca. Ce scénario d'accrétion asymétrique, qui est observé, est reproduit dans des simulations d'une collision de nuages magnétisés. Dans ce scénario, c'est la déformation du champ magnétique qui est responsable de l'accrétion asymétrique. La formation du filament Musca serait ainsi due à la convergence de deux flots de matière guidée par la courbure du champ magnétique provoquée par la collision des nuages HI à grande échelle.Dans la dernière partie, la cinématique du nuage massif DR21, qui forme des étoiles massives, est étudiée pour comparer la formation des étoiles massives à celle des étoiles de faible masse. Le nuage DR21 montre une asymétrie en V similaire à celle de Musca, ce qui indique que le nuage DR21 est aussi formé par une collision de nuages moléculaires mais avec une vitesse de collision plus importante que pour Musca. Les observations indiquent de plus que la formation des étoiles massives dans le nuage DR21 serait la conséquence directe de la prédominance de la gravité à grande échelle (> 1 pc) du gaz dense en contraste avec Musca pour lequel la gravité ne dominerait qu'aux plus petites échelles (< 0.1-0.2 pc). L'analyse cinématique globale de toute la région du Cygne montre que toute la région résulte de la même collision de nuages. Cette observation indique que c'est une collision de nuages à grande vitesse (> 10 km/s) qui pourrait expliquer la formation d'une association d'étoiles OB de plusieurs milliers d'étoiles. Dans ce scénario, les étoiles massives (OB) se formeraient dans les structures denses et massives (hubs et ridges) formées aux convergences dues à la collision à grande vitesse de nuages, et où la gravité à grande échelles domine la cinématique et l'évolution du gaz dense.
24. Planck intermediate results. XLIV. The structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap
- Author
-
Planck Collaboration, Aghanim, N., Alves, M. I. R., Arzoumanian, D., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P, Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F, Chiang, H. C., Colombo, L. P. L., Combet, C., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Davis, R. J., Bernardis, P., Rosa, A., Zotti, G., Delabrouille, J., Delouis, J. -M, Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Ferrière, K., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Guillet, V., Hansen, F. K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M, Langer, M., Lasenby, A., Lattanzi, M., Le Jeune, M., Levrier, F., Liguori, M., Lilje, P. B., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., Mcewen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A, Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Naselsky, P., Natoli, P., Neveu, J., Nørgaard-Nielsen, H. U., Oppermann, N., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polenta, G., Rachen, J. P., Rebolo, R., Reinecke, M., Remazeilles, M., Renzi, A., Ristorcelli, I., Rocha, G., Rossetti, M., Roudier, G., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Soler, J. D., Suur-Uski, A. -S, Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Maurizio Tomasi, Tristram, M., Trombetti, T., Valiviita, J., Vansyngel, F., Tent, F., Vielva, P., Villa, F., Wandelt, B. D., Wehus, I. K., Zacchei, A., Zonca, A., Aghanim, N., Alves, M.I.R., Arzoumanian, D., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A.J., Barreiro, R.B., Bartolo, N., Basak, S., Benabed, K., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J.R., Borrill, J., Bouchet, F.R., Boulanger, F., Bracco, A., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J.-F., Chiang, H.C., Colombo, L.P.L., Combet, C., Comis, B., Couchot, F., Coulais, A., Crill, B.P., Curto, A., Cuttaia, F., Davis, R.J., De Bernardis, P., De Rosa, A., De Zotti, G., Delabrouille, J., Delouis, J.-M., Di Valentino, E., Dickinson, C., Diego, J.M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T.A., Eriksen, H.K., Falgarone, E., Fantaye, Y., Ferrière, K., Finelli, F., Frailis, M., Fraisse, A.A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R.T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K.M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J.E., Guillet, V., Hansen, F.K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Jaffe, A.H., Jaffe, T.R., Jones, W.C., Keihänen, E., Keskitalo, R., Kisner, T.S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J.-M., Langer, M., Lasenby, A., Lattanzi, M., Le Jeune, M., Levrier, F., Liguori, M., Lilje, P.B., López-Caniego, M., Lubin, P.M., MacIás-Pérez, J.F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P.G., Martínez-González, E., Matarrese, S., Mauri, N., Mcewen, J.D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Naselsky, P., Natoli, P., Neveu, J., Nørgaard-Nielsen, H.U., Oppermann, N., Oxborrow, C.A., Pagano, L., Paoletti, D., Partridge, B., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polenta, G., Rachen, J.P., Rebolo, R., Reinecke, M., Remazeilles, M., Renzi, A., Ristorcelli, I., Rocha, G., Rossetti, M., Roudier, G., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Soler, J.D., Suur-Uski, A.-S., Tauber, J.A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Vansyngel, F., Van Tent, F., Vielva, P., Villa, F., Wandelt, B.D., Wehus, I.K., Zacchei, A., Zonca, A., Alves, M. I. R., Banday, A. J., Barreiro, R. B., Bernard, J. P., Bond, J. R., Bouchet, F. R., Cardoso, J. F., Chiang, H. C., Colombo, L. P. L., Crill, B. P., Davis, R. J., Delouis, J. M., Diego, J. M., Enßlin, T. A., Eriksen, H. K., Fraisse, A. A., Génova Santos, R. T., González Nuevo, J., Górski, K. M., Gregorio, Anna, Gudmundsson, J. E., Hansen, F. K., Henrot Versillé, S., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Kisner, T. S., Kurki Suonio, H., Lamarre, J. M., Lilje, P. B., López Caniego, M., Lubin, P. M., MacIás Pérez, J. F., Maggio, Gianmarco, Martin, P. G., Martínez González, E., Mcewen, J. D., Miville Deschênes, M. A., Nørgaard Nielsen, H. U., Oxborrow, C. A., Rachen, J. P., Ruiz Granados, B., Soler, J. D., Suur Uski, A. S., Tauber, J. A., Tavagnacco, Daniele, Wandelt, B. D., Wehus, I. K., Aghanim, N, Alves, M, Arzoumanian, D, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, A, Barreiro, R, Bartolo, N, Basak, S, Benabed, K, Bernard, J, Bersanelli, M, Bielewicz, P, Bonavera, L, Bond, J, Borrill, J, Bouchet, F, Boulanger, F, Bracco, A, Bucher, M, Burigana, C, Calabrese, E, Cardoso, J, Chiang, H, Colombo, L, Combet, C, Comis, B, Couchot, F, Coulais, A, Crill, B, Curto, A, Cuttaia, F, Davis, R, De Bernardis, P, De Rosa, A, De Zotti, G, Delabrouille, J, Delouis, J, Di Valentino, E, Dickinson, C, Diego, J, Doré, O, Douspis, M, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, T, Eriksen, H, Falgarone, E, Fantaye, Y, Ferrière, K, Finelli, F, Frailis, M, Fraisse, A, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, R, Gerbino, M, Ghosh, T, González-Nuevo, J, Górski, K, Gratton, S, Gregorio, A, Gruppuso, A, Gudmundsson, J, Guillet, V, Hansen, F, Helou, G, Henrot-Versillé, S, Herranz, D, Hivon, E, Huang, Z, Jaffe, A, Jaffe, T, Jones, W, Keihänen, E, Keskitalo, R, Kisner, T, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lähteenmäki, A, Lamarre, J, Langer, M, Lasenby, A, Lattanzi, M, Le Jeune, M, Levrier, F, Liguori, M, Lilje, P, López-Caniego, M, Lubin, P, MacIás-Pérez, J, Maggio, G, Maino, D, Mandolesi, N, Mangilli, A, Maris, M, Martin, P, Martínez-González, E, Matarrese, S, Mauri, N, Mcewen, J, Melchiorri, A, Mennella, A, Migliaccio, M, Miville-Deschênes, M, Molinari, D, Moneti, A, Montier, L, Morgante, G, Moss, A, Naselsky, P, Natoli, P, Neveu, J, Nørgaard-Nielsen, H, Oppermann, N, Oxborrow, C, Pagano, L, Paoletti, D, Partridge, B, Perdereau, O, Perotto, L, Pettorino, V, Piacentini, F, Plaszczynski, S, Polenta, G, Rachen, J, Rebolo, R, Reinecke, M, Remazeilles, M, Renzi, A, Ristorcelli, I, Rocha, G, Rossetti, M, Roudier, G, Ruiz-Granados, B, Salvati, L, Sandri, M, Savelainen, M, Scott, D, Sirignano, C, Soler, J, Suur-Uski, A, Tauber, J, Tavagnacco, D, Tenti, M, Toffolatti, L, Tomasi, M, Tristram, M, Trombetti, T, Valiviita, J, Vansyngel, F, Van Tent, F, Vielva, P, Villa, F, Wandelt, B, Wehus, I, Zacchei, A, Zonca, A, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), PLANCK, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Science and Technology Facilities Council (STFC)
- Subjects
Magnetohydrodynamics (MHD) ,magnetic field [ISM] ,Astronomy ,Cosmic microwave background ,Astrophysics ,Cosmic background radiation ,01 natural sciences ,Polarization ,Dust, extinction ,ISM: magnetic fields ,Methods: data analysis ,astro-ph.GA ,Astronomy and Astrophysics ,Space and Planetary Science ,Stokes parameters ,INTERSTELLAR TURBULENCE ,data analysis, dust, extinction, cosmic background radiation, ISM: magnetic fields [magnetohydrodynamics (MHD), polarization, methods] ,data analysis [Methods] ,010303 astronomy & astrophysics ,SCALE ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Settore FIS/05 ,extinction ,Dust ,Polarization (waves) ,GAS ,Physical Sciences ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,symbols ,magnetohydrodynamics (MHD) ,polarization ,methods: data analysis ,dust, extinction ,cosmic background radiation ,Galactic coordinate system ,MILKY-WAY ,GRAIN ALIGNMENT ,Astrophysics::High Energy Astrophysical Phenomena ,GRADIENTS ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,NO ,symbols.namesake ,ISM: magnetic field ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Planck ,Astrophysics::Galaxy Astrophysics ,Cosmic dust ,dust extinction ,Science & Technology ,010308 nuclear & particles physics ,magnetic fields [ISM] ,Spectral density ,LOFAR ,Astronomy and Astrophysic ,H I ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,SYNCHROTRON EMISSION ,data analysi [Methods] ,0201 Astronomical And Space Sciences ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,SKY ,Methods: data analysi - Abstract
International audience; Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (ψ), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l0,b0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of ψ has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and ψ to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and ψ distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.