Ermakova, L., SanJuan, E., Kamps, J., Huet, S., Ovchinnikova, I., Nurbakova, D., Araújo, S., Hannachi, R., Mathurin, E., Bellot, P., Barrón-Cedeño, A., Da San Martino, G., Degli Esposti, M., Sebastiani, F., Macdonald, C., Pasi, G., Hanbury, A., Potthast, M., Faggioli, G., Ferro, N., Héritages et Constructions dans le Texte et l'Image (HCTI), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois des Sciences de l'Homme et de la Société (IBSHS), Université de Brest (UBO), Laboratoire Informatique d'Avignon (LIA), Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI, University of Amsterdam [Amsterdam] (UvA), ManPower Language Solution, Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Universidade do Minho = University of Minho [Braga], Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and ILLC (FGw)
Although citizens agree on the importance of objective scientific information, yet they tend to avoid scientific literature due to access restrictions, its complex language or their lack of prior background knowledge. Instead, they rely on shallow information on the web or social media often published for commercial or political incentives rather than the correctness and informational value. This paper presents an overview of the CLEF 2022 SimpleText track addressing the challenges of text simplification approaches in the context of promoting scientific information access, by providing appropriate data and benchmarks, and creating a community of IR and NLP researchers working together to resolve one of the greatest challenges of today. The track provides a corpus of scientific literature abstracts and popular science requests. It features three tasks. First, content selection (what is in, or out?) challenges systems to select passages to include in a simplified summary in response to a query. Second, complexity spotting (what is unclear?) given a passage and a query, aims to rank terms/concepts that are required to be explained for understanding this passage (definitions, context, applications). Third, text simplification (rewrite this!) given a query, asks to simplify passages from scientific abstracts while preserving the main content.