Rafi Ullah, Georg Huhs, Emanuele Bosoni, Volker Blum, Alberto García, Pablo Ordejón, Emilio Artacho, Andrei Postnikov, Irina V. Lebedeva, Fabiano Corsetti, Richard Korytár, Miguel Pruneda, Ramón Cuadrado, Vladimir Dikan, Roberto Robles, Pablo García-Fernández, Jaime Ferrer, Mads Brandbyge, Javier Junquera, Jorge Cerdá, José M. Soler, Pedro Brandimarte, Nick Rübner Papior, Lin Lin, Victor Yu, Stephan Mohr, Sandra García, Sergio Illera, Peter Koval, Víctor M. García-Suárez, Arsalan Akhtar, Yann Pouillon, Pablo López-Tarifa, Sara G. Mayo, Julian D. Gale, Daniel Sánchez-Portal, Barcelona Supercomputing Center, Facultad de Ciencias y Tecnologías Químicas de Ciudad Real (UCLM), Institut Català de Nanociència i Nanotecnologia (ICN2), Universitat Autònoma de Barcelona (UAB), Catalan Institute of Nanoscience and Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Barcelona Institute of Science and Technology (BIST), Department of Earth Sciences [Cambridge, UK], University of Cambridge [UK] (CAM), Duke University [Durham], Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Donostia International Physics Center (DIPC), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Center for Nanostructured Graphene, Instituto Ciencias del Mar, CICNanoGUNE, University of Oviedo, Nanochemistry Research Institute, Curtin University [Perth], Planning and Transport Research Centre (PATREC)-Planning and Transport Research Centre (PATREC), Universidad de Cantabria [Santander], Universidad de Oviedo [Oviedo], Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC - CNS), Department of Applied Mathematics and Institute of Theoretical Computer Science (Charles University), Charles University [Prague] (CU), CIC NanoGUNE BRTA, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Natl Key Lab Plant Mol Genet, Chinese Academy of Sciences [Beijing] (CAS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Universidad Autonoma de Madrid (UAM), University of Basel (Unibas), Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC), Université de Lorraine (UL), ICN2 - Institut Catala de Nanociencia i Nanotecnologia (ICN2), Centro Mixto CSIC-UPV/EHU, Donostia International Physics Center - DIPC (SPAIN), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)-University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Universidad del País Vasco, Eusko Jaurlaritza, National Science Foundation (US), Universidad de Cantabria, and Simune Atomistics
This article is part of the JCP Special Topic on Electronic Structure Software., A review of the present status, recent enhancements, and applicability of the SIESTA program is presented. Since its debut in the mid-1990s, SIESTA’s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of SIESTA combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a realspace grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin–orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as WANNIER90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering SIESTA runs, and various post-processing utilities. SIESTA has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments., Siesta development was historically supported by different Spanish National Plan projects (Project Nos. MEC-DGES-PB95-0202, MCyT-BFM2000-1312, MEC-BFM2003-03372, FIS2006-12117, FIS2009-12721, FIS2012-37549, FIS2015-64886-P, and RTC-2016-5681-7), the latter one together with Simune Atomistics Ltd. We are thankful for financial support from the Spanish Ministry of Science, Innovation and Universities through Grant No. PGC2018-096955-B. We acknowledge the Severo Ochoa Center of Excellence Program [Grant Nos. SEV-2015-0496 (ICMAB) and SEV-2017-0706 (ICN2)], the GenCat (Grant No. 2017SGR1506), and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143). P.G.-F. acknowledges support from Ramón y Cajal (Grant No. RyC-2013-12515). J.I.C. acknowledges Grant No. RTI2018-097895-B-C41. R.C. acknowledges the European Union’s Horizon 2020 Research and Innovation Program under Marie Skłodoswka-Curie Grant Agreement No. 665919. D.S.P, P.K., and P.B. acknowledge Grant No. MAT2016-78293-C6, FET-Open No. 863098, and UPV-EHU Grant No. IT1246-19. V. W. Yu was supported by a MolSSI Fellowship (U.S. NSF Award No. 1547580), and V.B. and V.W.Y. were supported by the ELSI Development by the NSF (Award No. 1450280).