1. 3D Simulations Capture the Persistent Low-Mode Asymmetries Evident in Laser-Direct-Drive Implosions on OMEGA
- Author
-
A. Colaïtis, D. P. Turnbull, I. V. Igumenschev, D. Edgell, R. C. Shah, O. M. Mannion, C. Stoeckl, D. Jacob-Perkins, A. Shvydky, R. Janezic, A. Kalb, D. Cao, C. J. Forrest, J. Kwiatkowski, S. Regan, W. Theobald, V. N. Goncharov, D. H. Froula, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratory for lasers energetics - LLE (New-York, USA), University of Rochester [USA], and European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,General Physics and Astronomy - Abstract
Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer. Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized crossed-beam energy transfer contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset, and asymmetry from polarized crossed-beam energy transfer degrade yields by more than 40%. The effectiveness of two mitigation strategies for low modes is explored.
- Published
- 2022
- Full Text
- View/download PDF