K Rezynkina, P. Marley, J. E. García-Ramos, Jan Diriken, N. Kesteloot, P. Reiter, L. M. Fraile, Mark Huyse, Kristiaan Heyde, R. D. Page, O. Ivanov, R. Gernhäuser, R. Krücken, Th. Kröll, A. C. Larsen, E. Rapisarda, Tuomas Grahn, Alick Deacon, N. Warr, A. Petts, AP Robinson, S. J. Freeman, P. J. Napiorkowski, P. Van Duppen, R-D Herzberg, Thomas Elias Cocolios, B. Bruyneel, Gry Merete Tveten, R. Orlandi, E. Piselli, Ch. Fransen, B. Bastin, Marcus Scheck, Conor Fitzpatrick, D. Voulot, Rauno Julin, Baharak Hadinia, L. Próchniak, J. Srebrny, Magne Guttormsen, Sunniva Siem, Liam Gaffney, J. L. Wood, H. Hess, Panu Rahkila, J. Van de Walle, P. A. Butler, J. F. Smith, K Singh Chakkal, D. G. Jenkins, Michaël Bender, Andreas Wiens, Andrei Andreyev, M. P. Carpenter, M. Hass, Pauli Peura, K Hadyńska-Klȩk, Janne Pakarinen, R. Lutter, Andreas Ekström, I. Stefanescu, P.-H. Heenen, Joakim Cederkäll, K. Geibel, A. Blazhev, M. Zielinska, K. Wrzosek-Lipska, E. Clément, N. Bree, N. Patronis, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Grand Accélérateur National d'Ions Lourds (GANIL), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Helsinki Institute of Physics
The neutron-deficient mercury isotopes serve as a classical example of shape coexistence, whereby at low energy near-degenerate nuclear states characterized by different shapes appear. The electromagnetic structure of even-mass 182-188 Hg isotopes was studied using safe-energy Coulomb excitation of neutron-deficient mercury beams delivered by the REX-ISOLDE facility at CERN. The population of $ 0^{+}_{1,2}$01,2+, $ 2^{+}_{1,2}$21,2+and $ 4^{+}_{1}$41+states was observed in all nuclei under study. Reduced E2 matrix elements coupling populated yrast and non-yrast states were extracted, including their relative signs. These are a sensitive probe of shape coexistence and may be used to validate nuclear models. The experimental results are discussed in terms of mixing of two different configurations and are compared with three different model calculations: the Beyond Mean Field model, the Interacting Boson Model with configuration mixing and the General Bohr Hamiltonian. Partial agreement with experiment was observed, hinting to missing ingredients in the theoretical descriptions. The neutron-deficient mercury isotopes serve as a classical example of shape coexistence, whereby at low energy near-degenerate nuclear states characterized by different shapes appear. The electromagnetic structure of even-mass 182-188 Hg isotopes was studied using safe-energy Coulomb excitation of neutron-deficient mercury beams delivered by the REX-ISOLDE facility at CERN. The population of $ 0^{+}_{1,2}$01,2+, $ 2^{+}_{1,2}$21,2+and $ 4^{+}_{1}$41+states was observed in all nuclei under study. Reduced E2 matrix elements coupling populated yrast and non-yrast states were extracted, including their relative signs. These are a sensitive probe of shape coexistence and may be used to validate nuclear models. The experimental results are discussed in terms of mixing of two different configurations and are compared with three different model calculations: the Beyond Mean Field model, the Interacting Boson Model with configuration mixing and the General Bohr Hamiltonian. Partial agreement with experiment was observed, hinting to missing ingredients in the theoretical descriptions. ispartof: The European Physical Journal A - Hadrons and Nuclei vol:55 issue:8 pages:130-130 status: published