92 results on '"I. Ortigues-Marty"'
Search Results
2. Comparative analysis of signalling pathways in tissue protein metabolism in efficient and non-efficient beef cattle: acute response to an identical single meal size
- Author
-
P. Guarnido-Lopez, I. Ortigues-Marty, J. David, S. Polakof, and G. Cantalapiedra-Hijar
- Subjects
Amino acid catabolism ,Protein synthesis ,Protein turnover ,Residual feed intake ,Ruminant ,Animal culture ,SF1-1100 - Abstract
Protein turnover has been associated to residual feed intake (RFI) in beef cattle. However, this relationship may be confounded by feeding level and affected by the composition of the diet being fed. Our aim was to assess postmortem the protein metabolism signalling pathways in skeletal muscle and liver of 32 Charolais young bulls with extreme RFI phenotypes. Bulls were fed two contrasting diets during the whole fattening period but were subjected to a similar and single nutritional stimulus, induced by their respective concentrate, just prior to slaughter. The key targets were protein degradation (autophagy and ubiquitin) and synthesis signalling pathways through western-blot analysis, as well as hepatic transaminase activity. To ensure a precise assessment of all animals at the same postprandial time, they were provided with a test meal (2.5 kg of either a high-starch and high-protein concentrate or high-fibre and low-protein concentrate) 3 hours prior to slaughter, irrespective of their RFI grouping. Blood and tissues were sampled at the slaughterhouse (3 h and 3 h30 postprandially, respectively). In response to an identical single meal size, efficient RFI animals showed higher (P 0.05). Our findings suggest that, in response to an identical single meal size, efficient RFI animals exhibited lower activation of tissue protein degradation pathways and faster muscle protein synthesis activation compared to their inefficient counterparts. This pattern was observed regardless of the composition of the tested meals.
- Published
- 2023
- Full Text
- View/download PDF
3. Review: Reducing enteric methane emissions improves energy metabolism in livestock: is the tenet right?
- Author
-
D.P. Morgavi, G. Cantalapiedra-Hijar, M. Eugène, C. Martin, P. Noziere, M. Popova, I. Ortigues-Marty, R. Muñoz-Tamayo, and E.M. Ungerfeld
- Subjects
Feeding systems ,Hydrogen flows ,Metabolisable energy ,Methanogenesis inhibitor ,Ruminant ,Animal culture ,SF1-1100 - Abstract
The production of enteric methane in the gastrointestinal tract of livestock is considered as an energy loss in the equations for estimating energy metabolism in feeding systems. Therefore, the spared energy resulting from specific inhibition of methane emissions should be re-equilibrated with other factors of the equation. And, it is commonly assumed that net energy from feeds increases, thus benefitting production functions, particularly in ruminants due to the important production of methane in the rumen. Notwithstanding, we confirm in this work that inhibition of emissions in ruminants does not transpose into consistent improvements in production. Theoretical calculations of energy flows using experimental data show that the expected improvement in net energy for production is small and difficult to detect under the prevailing, moderate inhibition of methane production (≈25%) obtained using feed additives inhibiting methanogenesis. Importantly, the calculation of energy partitioning using canonical models might not be adequate when methanogenesis is inhibited. There is a lack of information on various parameters that play a role in energy partitioning and that may be affected under provoked abatement of methane. The formula used to calculate heat production based on respiratory exchanges should be validated when methanogenesis is inhibited. Also, a better understanding is needed of the effects of inhibition on fermentation products, fermentation heat, and microbial biomass. Inhibition induces the accumulation of H2, the main substrate used to produce methane, that has no energetic value for the host, and it is not extensively used by the majority of rumen microbes. Currently, the fate of this excess of H2 and its consequences on the microbiota and the host are not well known. All this additional information will provide a better account of energy transactions in ruminants when enteric methanogenesis is inhibited. Based on the available information, it is concluded that the claim that enteric methane inhibition will translate into more feed-efficient animals is not warranted.
- Published
- 2023
- Full Text
- View/download PDF
4. Exploration of robustness indicators using adaptive responses to short-term feed restriction in suckling primiparous beef cows
- Author
-
A. De La Torre, L. Barreto-Mendes, J.A.A. Pires, I. Cassar-Malek, I. Ortigues-Marty, and F. Blanc
- Subjects
Adaptation ,Functional data analysis ,Nutritional challenge ,Phenotype ,Suckling Charolais cows ,Animal culture ,SF1-1100 - Abstract
Animal robustness is a complex trait of importance for livestock production systems and genetic selection. Phenotyping is essential for evaluation of the adaptation of different genotypes to changing environments. This study tested an experimental framework to induce marked deviations in the adaptive responses of suckling beef cows and to identify relevant indicators of responses to characterise individual differences in the robustness of cows. The production and metabolic responses of primiparous suckling Charolais cows to two periods of feed restriction (FR, 50% of their net energy requirements) of different durations were monitored. After calving, 13 cows (aged 39 ± 2 months, BW of 680 ± 42 kg at calving) had ad libitum access to a diet composed of hay and supplemented with concentrate to meet their energy and protein requirements. Starting at 54 ± 6 days postcalving, the cows underwent two periods of FR: 4 days of FR (FR4), which was followed by 17 days of ad libitum intake to study the recovery from FR4, and 10 days of FR (FR10), which was followed by 18 days of ad libitum intake to study the recovery from FR10. The milk yield (MY), BW, body condition score and plasma non-esterified fatty acid (NEFA), β-hydroxybutyrate, glucose and urea concentrations were measured before, during and after each FR. Among all measured variables, the MY and NEFA concentrations showed the most significant changes in response to FR. A functional data analysis approach was applied to the MY and NEFA data to model the adaptive responses and extract quantifiable indicators of deviation and recovery. Linear correlations (P
- Published
- 2022
- Full Text
- View/download PDF
5. Net hepatic release of glucose from precursor supply in ruminants: a meta-analysis
- Author
-
C. Loncke, P. Nozière, J. Vernet, H. Lapierre, L. Bahloul, M. Al-Jammas, D. Sauvant, and I. Ortigues-Marty
- Subjects
nutrient flux ,gluconeogenesis ,meta-analysis ,glucose ,liver ,Animal culture ,SF1-1100 - Abstract
For their glucose supply, ruminants are highly dependent on the endogenous synthesis in the liver, but despite the numerous studies that evaluated hepatic glucose production, very few simultaneously measured hepatic glucose production and uptake of all precursors. As a result, the variability of precursor conversion into glucose in the liver is not known. The present study aimed at investigating by meta-analysis the relationships between hepatic glucose net release and uptake of precursors. We used the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which gathers international results on net nutrient fluxes at splanchnic level measured in catheterized animals. Response equations were developed for intakes up to 41 g DM intake/kg BW per day of diets varying from 0 to 100 g of concentrate/100 g DM in the absence of additives. The net hepatic uptake of propionate, α-amino-N and l-lactate was linearly and better related to their net portal appearance (NPA) than to their afferent hepatic flux. Blood flow data were corrected for lack of deacetylation of the para-aminohippuric acid, and this correction was shown to impact the response equations. To develop response equations between the availability of precursors (portal appearance and hepatic uptake) and net glucose hepatic release, missing data on precursor fluxes were predicted from dietary characteristics using previously developed response equations. Net hepatic release of glucose was curvilinearly related to hepatic supply and uptake of the sum of precursors, suggesting a lower conversion rate of precursors at high precursor supply. Factors of variation were explored for the linear portion of this relationship, which applied to NPA of precursors ranging from 0.99 to 9.60 mmol C/kg BW per h. Hepatic release of glucose was shown to be reduced by the portal absorption of glucose from diets containing bypass starch and to be increased by an increased uptake of β-hydroxybutyrate indicative of higher body tissue mobilization. These relationships were affected by the physiological status of the animals. In conclusion, we established equations that quantify the net release of glucose by the liver from the net availability of precursors. They provide a quantitative overview of factors regulating hepatic glucose synthesis in ruminants. These equations can be linked with the predictions of portal absorption of nutrients from intake and dietary characteristics, and provide indications of glucose synthesis from dietary characteristics.
- Published
- 2020
- Full Text
- View/download PDF
6. Plasma proteins δ15N vs plasma urea as candidate biomarkers of between-animal variations of feed efficiency in beef cattle: Phenotypic and genetic evaluation
- Author
-
P. Guarnido-Lopez, I. Ortigues-Marty, S. Taussat, C. Fossaert, G. Renand, and G. Cantalapiedra-Hijar
- Subjects
Feed conversion efficiency ,Biomarkers ,Individual variability ,15N natural abundance ,Ruminants ,Animal culture ,SF1-1100 - Abstract
Identifying animals that are superior in terms of feed efficiency may improve the profitability and sustainability of the beef cattle sector. However, measuring feed efficiency is costly and time-consuming. Biomarkers should thus be explored and validated to predict between-animal variation of feed efficiency for both genetic selection and precision feeding. In this work, we aimed to assess and validate two previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma urea concentrations and the 15N natural abundance in plasma proteins (plasma δ15N), to predict the between-animal variation in feed efficiency when animals were fed two contrasted diets (high-starch vs high-fibre diets). We used an experimental network design with a total of 588 young bulls tested for feed efficiency through two different traits (feed conversion efficiency [FCE] and residual feed intake [RFI]) during at least 6 months in 12 cohorts (farm × period combination). Animals reared in the same cohort, receiving the same diet and housed in the same pen, were considered as a contemporary group (CG). To analyse between-animal variations and explore relationships between biomarkers and feed efficiency, two statistical approaches, based either on mixed-effect models or regressions from residuals, were conducted to remove the between-CG variability. Between-animal variation of plasma δ15N was significantly correlated with feed efficiency measured through the two criteria traits and regardless of the statistical approach. Conversely, plasma urea was not correlated to FCE and showed only a weak, although significant, correlation with RFI. The response of plasma δ15N to FCE variations was higher when animals were fed a high-starch compared to a high-fibre diet. In addition, we identified two dietary factors, the metabolisable protein to net energy ratio and the rumen protein balance that influenced the relation between plasma δ15N and FCE variations. Concerning the genetic evaluation, and despite the moderate heritability of the two biomarkers (0.28), the size of our experimental setup was insufficient to detect significant genetic correlations between feed efficiency and the biomarkers. However, we validated the potential of plasma δ15N to phenotypically discriminate two animals reared in identical conditions in terms of feed efficiency as long as they differ by at least 0.049 g/g for FCE and 1.67 kg/d for RFI. Altogether, the study showed phenotypic, but non-genetic, relationships between plasma proteins δ15N and feed efficiency that varied according to the efficiency index and the diet utilised.
- Published
- 2021
- Full Text
- View/download PDF
7. Nitrogen isotopic fractionation as a biomarker for nitrogen use efficiency in ruminants: a meta-analysis
- Author
-
G. Cantalapiedra-Hijar, R.J. Dewhurst, L. Cheng, A.R.J. Cabrita, A.J.M. Fonseca, P. Nozière, D. Makowski, H. Fouillet, and I. Ortigues-Marty
- Subjects
15N ,ruminant ,nitrogen use efficiency ,meta-analysis ,Animal culture ,SF1-1100 - Abstract
Animal proteins are naturally 15N enriched relative to the diet and the extent of this difference (Δ15Nanimal-diet or N isotopic fractionation) has been correlated to N use efficiency (NUE; N gain or milk N yield/N intake) in some recent ruminant studies. The present study used meta-analysis to investigate whether Δ15Nanimal-diet can be used as a predictor of NUE across a range of dietary conditions, particularly at the level of between-animal variation. An additional objective was to identify variables related to N partitioning explaining the link between NUE and Δ15Nanimal-diet. Individual values from eight publications reporting both NUE and Δ15Nanimal-diet for domestic ruminants were used to create a database comprising 11 experimental studies, 41 treatments and individual animal values for NUE (n=226) and Δ15Nanimal-diet (n=291). Data were analyzed by mixed-effect regression analysis taking into account experimental factors as random effects on both the intercept and slope of the model. Diets were characterized according to the INRA feeding system in terms of N utilization at the rumen, digestive and metabolic levels. These variables were used in a partial least squares regression analysis to predict separately NUE and Δ15Nanimal-diet variation, with the objective of identifying common variables linking NUE and Δ15Nanimal-diet. For individuals reared under similar conditions (within-study) and at the same time (within-period), the variance of NUE and Δ15Nanimal-diet not explained by dietary treatments (i.e. between-animal variation plus experimental error) was 35% and 55%, respectively. Mixed-effect regression analysis conducted with treatment means showed that Δ15Nanimal-diet was significantly and negatively correlated to NUE variation across diets (NUE=0.415 −0.055×Δ15Nanimal-diet). When using individual values and taking into account the random effects of study, period and diet, the relationship was also significant (NUE=0.358 −0.035×Δ15Nanimal-diet). However, there may be a biased prediction for animals close to zero, or in negative, N balance. When using a novel statistical approach, attempting to regress between-animal variation in NUE on between-animal variation in Δ15Nanimal-diet (without the influence of experimental factors), the negative relationship was still significant, highlighting the ability of Δ15Nanimal-diet to capture individual variability. Among the studied variables related to N utilization, those concerning N efficiency use at the metabolic level contributed most to predict both Δ15Nanimal-diet and NUE variation, with rumen fermentation and digestion contributing to a lesser extent. This study confirmed that on average Δ15Nanimal-diet can predict NUE variation across diets and across individuals reared under similar conditions.
- Published
- 2018
- Full Text
- View/download PDF
8. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?
- Author
-
G. Cantalapiedra-Hijar, H. Fouillet, J.F. Huneau, A. Fanchone, M. Doreau, P. Nozière, and I. Ortigues-Marty
- Subjects
isotopic N fractionation ,rumen ,efficiency of N utilization ,ruminant ,15N ,Animal culture ,SF1-1100 - Abstract
Animal tissues are naturally 15N enriched relative to their diet and the extent of this difference (Δ15Nanimal-diet) has been correlated to the efficiency of N assimilation in different species. The rationale is that transamination and deamination enzymes, involved in amino acid metabolism are likely to preferentially convert amino groups containing 14N over 15N. However, in ruminants the contribution of rumen bacterial metabolism relative to animal tissues metabolism to naturally enrich animal proteins in terms of 15N has been not assessed yet. The objective of this study was to assess the impact of rumen and digestion processes on the relationship between Δ15Nanimal-diet and efficiency of N utilization for milk protein yield (milk N efficiency (MNE); milk N yield/N intake) as well as the relationship between the 15N natural abundance of rumen bacteria and the efficiency of N use at the rumen level. Solid- and liquid-associated rumen bacteria, duodenal digesta, feces and plasma proteins were obtained (n=16) from four lactating Holstein cows fed four different diets formulated at two metabolizable protein supplies (80% v. 110% of protein requirements) crossed by two different dietary energy source (diets rich in starch v. fiber). We measured the isotopic N fractionation between animal and diet (Δ15Nanimal-diet) in these different body pools. The Δ15Nanimal-diet was negatively correlated with MNE when measured in solid-associated rumen bacteria, duodenal digesta, feces and plasma proteins, with the strongest correlation found for the latter. However, our results showed a very weak 15N enrichment of duodenal digesta (Δ15Nduodenal digesta-diet mean value=0.42) compared with that observed in plasma proteins (Δ15Nplasma protein-diet mean value=2.41). These data support the idea that most of the isotopic N fractionation observed in ruminant proteins (Δ15Nplasma protein-diet) has a metabolic origin with very little direct impact of the overall digestion process on the existing relationship between Δ15Nplasma protein-diet and MNE. The 15N natural abundance of rumen bacteria was not related to either rumen N efficiency (microbial N/available N) or digestive N efficiency (metabolizable protein supply/CP intake), but showing a modest positive correlation with rumen ammonia concentration. When using diets not exceeding recommended protein levels, the contribution of rumen bacteria and digestion to the isotopic N fractionation between animal proteins and diet is low. In our conditions, most of the isotopic N fractionation (Δ15Nplasma protein-diet) could have a metabolic origin, but more studies are warranted to confirm this point with different diets and approaches.
- Published
- 2016
- Full Text
- View/download PDF
9. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle
- Author
-
G. Cantalapiedra-Hijar, M. Abo-Ismail, G.E. Carstens, L.L. Guan, R. Hegarty, D.A. Kenny, M. McGee, G. Plastow, A. Relling, and I. Ortigues-Marty
- Subjects
residual feed intake ,ruminant ,feed conversion ratio ,steer ,individual variability ,Animal culture ,SF1-1100 - Abstract
Animal’s feed efficiency in growing cattle (i.e. the animal ability to reach a market or adult BW with the least amount of feed intake), is a key factor in the beef cattle industry. Feeding systems have made huge progress to understand dietary factors influencing the average animal feed efficiency. However, there exists a considerable amount of animal-to-animal variation around the average feed efficiency observed in beef cattle reared in similar conditions, which is still far from being understood. This review aims to identify biological determinants and molecular pathways involved in the between-animal variation in feed efficiency with particular reference to growing beef cattle phenotyped for residual feed intake (RFI). Moreover, the review attempts to distinguish true potential determinants from those revealed through simple associations or indirectly linked to RFI through their association with feed intake. Most representative and studied biological processes which seem to be connected to feed efficiency were reviewed, such as feeding behaviour, digestion and methane production, rumen microbiome structure and functioning, energy metabolism at the whole body and cellular levels, protein turnover, hormone regulation and body composition. In addition, an overall molecular network analysis was conducted for unravelling networks and their linked functions involved in between-animal variation in feed efficiency. The results from this review suggest that feeding and digestive-related mechanisms could be associated with RFI mainly because they co-vary with feed intake. Although much more research is warranted, especially with high-forage diets, the role of feeding and digestive related mechanisms as true determinants of animal variability in feed efficiency could be minor. Concerning the metabolic-related mechanisms, despite the scarcity of studies using reference methods it seems that feed efficient animals have a significantly lower energy metabolic rate independent of the associated intake reduction. This lower heat production in feed efficient animals may result from a decreased protein turnover and a higher efficiency of ATP production in mitochondria, both mechanisms also identified in the molecular network analysis. In contrast, hormones and body composition could not be conclusively related to animal-to-animal variation in feed efficiency. The analysis of potential biological networks underlying RFI variations highlighted other significant pathways such as lipid metabolism and immunity and stress response. Finally, emerging knowledge suggests that metabolic functions underlying genetic variation in feed efficiency could be associated with other important traits in animal production. This emphasizes the relevance of understanding the biological basis of relevant animal traits to better define future balanced breeding programmes.
- Published
- 2018
- Full Text
- View/download PDF
10. Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and β-hydroxybutyrate in ruminants: a meta-analysis
- Author
-
C. Loncke, P. Nozière, L. Bahloul, J. Vernet, H. Lapierre, D. Sauvant, and I. Ortigues-Marty
- Subjects
diet characteristic ,ketogenic nutrients ,meta-analysis ,ruminant ,splanchnic release ,Animal culture ,SF1-1100 - Abstract
For energy feeding systems for ruminants to evolve towards a nutrient-based system, dietary energy supply has to be determined in terms of amount and nature of nutrients. The objective of this study was to establish response equations of the net hepatic flux and net splanchnic release of acetate, butyrate and β-hydroxybutyrate to changes in diet and animal profiles. A meta-analysis was applied on published data compiled from the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which pools the results from international publications on net splanchnic nutrient fluxes measured in multi-catheterized ruminants. Prediction variables were identified from current knowledge on digestion, hepatic and other tissue metabolism. Subsequently, physiological and other, more integrative, predictors were obtained. Models were established for intakes up to 41 g dry matter per kg BW per day and diets containing up to 70 g concentrate per 100 g dry matter. Models predicted the net hepatic fluxes or net splanchnic release of each nutrient from its net portal appearance and the animal profile. Corrections were applied to account for incomplete hepatic recovery of the blood flow marker, para-aminohippuric acid. Changes in net splanchnic release (mmol/kg BW per hour) could then be predicted by combining the previously published net portal appearance models and the present net hepatic fluxes models. The net splanchnic release of acetate and butyrate were thus predicted from the intake of ruminally fermented organic matter (RfOM) and the nature of RfOM (acetate: residual mean square error (RMSE)=0.18; butyrate: RMSE=0.01). The net splanchnic release of β-hydroxybutyrate was predicted from RfOM intake and the energy balance of the animals (RMSE=0.035), or from the net portal appearance of butyrate and the energy balance of the animals (RMSE=0.050). Models obtained were independent of ruminant species, and presented low interfering factors on the residuals, least square means or individual slopes. The model equations highlighted the importance of considering the physiological state of animals when predicting splanchnic metabolism. This work showed that it is possible to use simple predictors to accurately predict the amount and nature of ketogenic nutrients released towards peripheral tissues in both sheep and cattle at different physiological status. These results provide deeper insight into biological processes and will contribute to the development of improved tools for dietary formulation.
- Published
- 2015
- Full Text
- View/download PDF
11. Dietary carbohydrate composition modifies the milk N efficiency in late lactation cows fed low crude protein diets
- Author
-
G. Cantalapiedra-Hijar, J.L. Peyraud, S. Lemosquet, E. Molina-Alcaide, H. Boudra, P. Nozière, and I. Ortigues-Marty
- Subjects
milk N efficiency ,dairy cow ,carbohydrate composition ,dietary CP concentration ,N pollution ,Animal culture ,SF1-1100 - Abstract
Nitrogen emissions from dairy cows can be readily decreased by lowering the dietary CP concentration. The main objective of this work was to test whether the milk protein yield reduction associated with low N intakes could be partially compensated for by modifying the dietary carbohydrate composition (CHO). The effects of CHO on digestion, milk N efficiency (milk N/N intake; MNE) and animal performance were studied in four Jersey cows fed 100% or 80% of the recommended protein requirements using a 4×4 Latin square design. Four iso-energetic diets were formulated to two different CHO sources (starch diets with starch content of 34.3% and NDF at 32.5%, and fiber diets with starch content of 5.5% and NDF at 49.1%) and two CP levels (Low=12.0% and Normal=16.5%). The apparent digestible organic matter intake (DOMI) and the protein supply (protein digestible in the small intestine; PDIE) were similar between starch and fiber diets. As planned, microbial N flow (MNF) to the duodenum, estimated from the urinary purine derivatives (PD) excretion, was similar between Low and Normal CP diets. However, the MNF and the efficiency of microbial synthesis (g of microbial N/kg apparently DOMI) were higher for starch v. fiber diets. Milk and milk N fractions (CP, true protein, non-protein N (NPN)) yield were higher for starch compared with fiber diets and for Normal v. Low CP diets. Fecal N excretion was similar across dietary treatments. Despite a higher milk N ouput with starch v. fiber diets, the CHO modified neither the urinary N excretion nor the milk urea-N (MUN) concentration. The milk protein yield relative to both N and PDIE intakes was improved with starch compared with fiber diets. Concentrations of β-hydroxybutyrate, urea and Glu increased and those of glucose and Ala decreased in plasma of cows fed starch v. fiber diets. On the other hand, plasma concentration of albumin, urea, insulin and His increased in cows fed Normal compared with Low CP diets. This study showed that decreasing the dietary CP proportion from 16.5% to 12.0% increases and decreases considerably the MNE and the urinary N excretion, respectively. Moreover, present results show that at similar digestible OM and PDIE intakes, diets rich in starch improves the MNE and could partially compensate for the negative effects of Low CP diets on milk protein yield.
- Published
- 2014
- Full Text
- View/download PDF
12. A grass-based diet favours muscle n-3 long-chain PUFA deposition without modifying gene expression of proteins involved in their synthesis or uptake in Charolais steers
- Author
-
M. Cherfaoui, D. Durand, M. Bonnet, L. Bernard, D. Bauchart, I. Ortigues-Marty, and D. Gruffat
- Subjects
n-3 LCPUFA, synthesis, uptake, steer muscles, grass ,Animal culture ,SF1-1100 - Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are subject of growing interest as they are of particular relevance for meat quality and human health. However, their content in the muscles of cattle is generally low probably as the complex result of their biosynthesis from dietary n-3 PUFA in the muscle and/or in other tissues/organs and of their subsequent uptake by the muscle. In view of this, this study aimed at understanding whether the changes in the muscle n-3 LCPUFA content, depending on the diet (maize silage v. grass) or the muscle type (Rectus abdominis, RA v. Semitendinosus, ST) in 12 Charolais steers, were related to variations in the gene expression of proteins involved in n-3 LCPUFA biosynthesis or cellular uptake. Tissue fatty acid composition was analysed by gas-liquid chromatography and mRNA abundance of proteins by quantitative real-time PCR. The grass-based diet resulted in a 2.3-fold (P < 0.0002) increase in both RA and ST n-3 LCPUFA content compared with the maize silage-based diet, whereas no difference in the expression of genes involved in n-3 LCPUFA biosynthesis and uptake was observed between diets. ST exhibited a 1.5-fold higher n-3 LCPUFA content than RA (P < 0.003), whereas the gene expression of proteins involved in n-3 LCPUFA biosynthesis and uptake was 1.3- to 18-fold higher in RA than in ST (P < 0.05). In conclusion, diet- or muscle type-dependent changes in the muscle n-3 LCPUFA content of Charolais steers did not seem to be mediated by the gene expression regulation of proteins involved in the biosynthesis or uptake of these fatty acids.
- Published
- 2013
- Full Text
- View/download PDF
13. Adaptations of hepatic amino acid uptake and net utilisation contributes to nitrogen economy or waste in lambs fed nitrogen- or energy-deficient diets
- Author
-
G. Kraft, I. Ortigues-Marty, D. Durand, D. Rémond, T. Jardé, B. Bequette, and I. Savary-Auzeloux
- Subjects
amino acid ,lamb ,liver ,net flux ,Animal culture ,SF1-1100 - Abstract
We investigated the effect of relative changes in dietary nitrogen (N) and energy supply and the subsequent variations in net portal appearance (NPA) of nitrogenous and energy nutrients on the net amino acid (AA) uptake by the liver and net N supply to the peripheral tissues. Six lambs were catheterised across the splanchnic tissues and received, in a replicated Latin square, one of three dietary treatments. The diets were formulated to either match the requirements of N and energy (C), or supply only 0.8 of the N requirement (LN) or 0.8 of the energy requirement (LE). Net fluxes of AA and urea-N were measured across the portal-drained viscera, and estimation of arterial hepatic flow allowed the estimation of hepatic fluxes. Catheters were implanted into the portal and hepatic veins as well as in the abdominal aorta for the measurement of AA fluxes. Animals fed the LN diet showed more efficient N retention (0.59 of digested N) than did the C and LE diet (0.50 and 0.33, respectively; P < 0.001). The NPA of total AA-N for the LN diet was only 0.60 of the value measured for the control (C) diet (P < 0.01). Despite this, the total estimated AA-N net splanchnic fluxes were not significantly different across the three diets (3.3, 1.9 and 2.6 g total AA-N/day for C, LN and LE, respectively, P = 0.52). Thus, different metabolic regulations must have taken place across the liver between the three experimental diets. A combination of decreased net uptake of total AA-N by the liver of animals in the LN diet (0.61 of the C diet; P = 0.002) and reduced urinary urea-N production (0.52 of the C diet; P = 0.001) spared AA from catabolism in the LN diet relative to the other two diets. For the LE diet, the urinary urea-N output was 1.3 times the value of the C diet (P = 0.01). This may relate to an increased catabolism of AA by the muscle and/or, to a lesser extent, to an increased utilisation of AA for gluconeogenesis in the liver. These effects may explain the reduced whole body protein retention observed with the LE diet.
- Published
- 2011
- Full Text
- View/download PDF
14. Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues
- Author
-
P. Nozière, I. Ortigues-Marty, C. Loncke, and D. Sauvant
- Subjects
ruminant ,carbohydrate ,volatile fatty acids ,glucose ,meta-analysis ,Animal culture ,SF1-1100 - Abstract
Carbohydrates are the main source of energy in ruminants. Their site, extent and kinetics of digestion highly impact the amount and profile of nutrients delivered to peripheral tissues, and the responses of the animal, i.e. ingestion, efficiency of production, N and methane excretion, quality of products and welfare. Development of multi-objective feed evaluation systems thus requires a more integrated quantitative knowledge on carbohydrate digestion and yield of terminal products, as well as on their metabolism by splanchnic tissues. The objective of this paper is to review (i) quantitative knowledge on fibre, starch and sugar digestion, volatile fatty acids (VFA) and glucose production and splanchnic metabolism and (ii) modelling approaches which aim at representing and/or predicting nutrient fluxes in the digestive tract, portal and hepatic drainage. It shows that the representation of carbohydrate digestion and VFA yield is relatively homogeneous among models. Although published quantitative comparisons of these models are scarce, they stress that prediction of fibre digestion and VFA yield and composition is still not good enough for use in feed formulation, whereas prediction of microbial N yield and ruminal starch digestion seems to be more satisfactory. Uncertainties on VFA stoichiometric coefficients and absorption rates may partly explain the poor predictions of VFA. Hardly any mechanistic models have been developed on portal-drained viscera (PDV) metabolism whereas a few exist for liver metabolism. A qualitative comparison of these models is presented. Most are focused on dairy cows and their level of aggregation in the representation of nutrient fluxes and metabolism highly differs depending on their objectives. Quantitative comparison of these models is still lacking. However, recent advances have been achieved with the empirical prediction of VFA and glucose production and fluxes through PDV and liver based on the current INRA feed evaluation system. These advances are presented. They illustrate that empirical prediction of ruminal VFA and intestinal glucose production can be evaluated by comparison with measured net portal net fluxes. We also illustrate the potential synergy between empirical and mechanistic modelling. It is concluded that concomitant empirical and mechanistic approach may likely help to progress towards development of multi-objective feed evaluation systems based on nutrient fluxes.
- Published
- 2010
- Full Text
- View/download PDF
15. Responses of hepatic blood flows to changes in intake in sheep: a meta-analysis
- Author
-
J. Vernet, P. Nozière, S. Léger, D. Sauvant, and I. Ortigues-Marty
- Subjects
hepatic blood flow ,intake ,sheep ,meta-analysis ,Animal culture ,SF1-1100 - Abstract
This work set out to establish the response equations for hepatic blood flows in sheep and the contribution of hepatic arterial flow to hepatic venous blood flow due to changes in intake levels at constant diet composition. The FLORA (FLuxes across Organs and tissues in Ruminant Animals) database was used, and meta-analysis performed. The meta-analysis involved selection of published papers, identification of studies, description and coding of the selected dataset and statistical analysis using a covariance model. Meta-analyses were carried out using a within-study approach. To ensure absence of bias, the analysis incorporated interfering variables and factors studied in between-study comparisons. Variables concerned diet composition; qualitative factors concerned the physiological state of the animals and the methods used to measure blood flow. The results obtained showed that hepatic blood flows were positively related to intake in sheep. The magnitude of the response (as indicated by the slope) varied with the level of intake and the blood vessel (portal, hepatic venous or arterial). Nine linear relationships were established for the portal, hepatic venous and arterial blood flows as a function of dry matter intake (DMI) with below- and above-maintenance levels considered separately. Data obtained at below- and above-maintenance levels were considered together and four quadratic relationships were established for hepatic blood flows as a function of DMI. These relationships expressed a strong effect of intake on hepatic blood flows. The contribution of hepatic arterial to hepatic venous blood flow averaged 18.2%, with a wide variability. It did not vary significantly with level of intake. Although in between-study comparisons the arterial/venous blood flow was positively influenced by the organic matter digestibility of the diet, the relationships we obtained were robust. They can be used in models of net hepatic nutrient fluxes to predict variations and absolute values of hepatic blood flows from variations and absolute values of DMI.
- Published
- 2009
- Full Text
- View/download PDF
16. Food restriction and refeeding in lambs influence muscle antioxidant status
- Author
-
I. Savary-Auzeloux, D. Durand, D. Gruffat, D. Bauchart, and I. Ortigues-Marty
- Subjects
antioxidant status ,compensatory growth ,muscle ,sheep ,Animal culture ,SF1-1100 - Abstract
Compensatory growth, a frequent phenomenon observed in ruminants due to seasonal variation in food availability, affects protein metabolism including protein oxidation. These oxidation processes may have an impact on animal health as well as on meat protein degradation during post mortem aging (ie meat maturation). Sixteen male lambs were randomly divided into four groups. One group was fed ad libitum (C) and one group was food-restricted to 60% of the intake of the C group (R). The last two groups were restricted similarly to the R group and refed either ad libitum (RAL) or similarly to the C group (pair-feeding) (RPF). Muscles samples were taken immediately after slaughter. The present study showed that the restriction/refeeding pattern had no effect on protein oxidation in the muscles studied (longissimus dorsi (LD), semitendinosus (ST) and supraspinatus (SP)). However, total antioxidant capacity decreased after food restriction (−51%, −43%, P < 0.01 for ST and LD muscles, respectively) and re-increased only after ad libitum refeeding. This alteration in the total antioxidant status can partially be explained by the similar pattern of change observed in the glutathione concentration of the muscles (−25%, P < 0.05 for ST muscle and NS for the other muscles). However, none of the concentrations of other water-soluble antioxidants studied (carnosine, anserine, glutathione peroxidase and superoxide dismutase) were altered during compensatory growth. This study showed that an inappropriate feeding level following a nutritional stress induced alterations in the total antioxidant status (particularly that of glutathione), which may have consequences on animal health. Other consequences of a decrease of the animal antioxidant status in vivo could be an alteration of the protein oxidation processes during meat maturation.
- Published
- 2008
- Full Text
- View/download PDF
17. Responses to nutrients in farm animals: implications for production and quality
- Author
-
J.F. Hocquette, S. Tesseraud, I. Cassar-Malek, Y. Chilliard, and I. Ortigues-Marty
- Subjects
metabolism ,nutrients ,production ,quality ,tissues ,Animal culture ,SF1-1100 - Abstract
It is well known that any quantitative (energy and protein levels) and qualitative (nature of the diet, nutrient dynamic) changes in the feeding of animals affect metabolism. Energy expenditure and feed efficiency at the whole-body level, nutrient partitioning between and within tissues and organs and, ultimately, tissue and organ characteristics are the major regulated traits with consequences on the quality of the meat and milk produced. Recent progress in biology has brought to light important biological mechanisms which explain these observations: for instance, regulation by the nutrients of gene expression or of key metabolic enzyme activity, interaction and sometimes cross-regulation or competition between nutrients to provide free energy (ATP) to living cells, indirect action of nutrients through a complex hormonal action, and, particularly in herbivores, interactions between trans-fatty acids produced in the rumen and tissue metabolism. One of the main targets of this nutritional regulation is a modification of tissue insulin sensitivity and hence of insulin action. In addition, the nutritional control of mitochondrial activity (and hence of nutrient catabolism) is another major mechanism by which nutrients may affect body composition and tissue characteristics. These regulations are of great importance in the most metabolically active tissues (the digestive tract and the liver) and may have undesirable (i.e. diabetes and obesity in humans) or desirable consequences (such as the production of fatty liver by ducks and geese, and the production of fatty and hence tasty meat or milk with an adapted fatty acid profile).
- Published
- 2007
- Full Text
- View/download PDF
18. Influence of the diet and grazing on adipose tissue lipogenic activities and plasma leptin in steers
- Author
-
Y. Faulconnier, I. Ortigues-Marty, C. Delavaud, D. Dozias, R. Jailler, D. Micol, and Y. Chilliard
- Subjects
adipose tissue ,grass diets ,lipogenesis ,maize silage ,steers ,Animal culture ,SF1-1100 - Abstract
The objectives of the two experiments were to determine the respective effects and interactions of diet type (grass v. maize diets) and physical activity (grazing v. zero grazing) on lipogenic enzyme activities and adipose cell size in subcutaneous, perirenal and intermuscular adipose tissues and on plasma metabolites and hormones in Charolais steers. After weaning, the steers were assigned to two (Experiment 1, n = 24) or three (Experiment 2, n = 24) groups, with steers in Experiment 1 grazed grass or indoors maize-silage-fed and steers in Experiment 2 grazed grass, indoors cut grass- or indoors maize-silage-fed. Both experiments lasted for 23 months. All grass-fed animals were fed grass silage during the two winter seasons. During the two summer seasons, steers fed on grass were rotationally grazed on a perennial rye-grass pasture while steers fed on cut grass were fed indoors on freshly cut grass alone. Steers fed on maize silage were fed maize silage indoors during the entire experiment. All animals were reared for similar body weight and growth rates and slaughtered at the same age (31 to 32 months). Activities of lipogenic enzymes were significantly lower in the three adipose tissue sites of steers fed cut grass compared with maize silage, although there were less-marked effects in intermuscular adipose tissue. Plasma insulin and glucose concentrations were also lower in steers fed cut grass whereas plasma leptin concentration was similar. As body fat content was not affected by nutritional treatment, it is suggested that the decrease in potential lipogenic activity was associated with the nature of the diet and not to differences in available net energy. In other respects, grazed grass compared with eating cut grass did not affect lipogenic enzyme activities but decreased plasma leptin concentrations in the older steers and increased plasma non-esterified fatty acids and glucose concentrations without affecting adipose tissue weight and adipose cell size.
- Published
- 2007
- Full Text
- View/download PDF
19. Métabolisme énergétique des muscles squelettiques chez les animaux producteurs de viande
- Author
-
J.F. HOCQUETTE, I. ORTIGUES-MARTY, M. DAMON, P. HERPIN, and Y. GEAY
- Subjects
Animal culture ,SF1-1100 ,Aquaculture. Fisheries. Angling ,SH1-691 - Abstract
Le muscle est d’importance économique majeure chez les animaux producteurs de viande. Ses principales fonctions physiologiques sont la thermogenèse, la posture et l’activité physique de l’animal. Ces fonctions et la croissance du muscle ont des besoins spécifiques en énergie, entraînant parfois des compétitions pour l’utilisation des différents nutriments. Ces régulations métaboliques modifient les efficacités de production et d’utilisation de l’ATP, et certaines caractéristiques musculaires déterminantes pour les qualités de la viande. Par exemple, un métabolisme musculaire plus glycolytique est associé à une meilleure utilisation du glucose, à une plus grande sensibilité du muscle à l’insuline, à un développement accru du muscle, à une réduction de ses dépenses énergétiques, et à une augmentation de sa teneur en glycogène. L’amélioration de la croissance musculaire par la sélection génétique induit un métabolisme musculaire moins oxydatif avec, comme conséquence, moins de lipides intramusculaires. Une augmentation des apports énergétiques favorise les dépôts de protéines, de glycogène et de lipides intramusculaires. Toutefois, des apports excessifs induisent une résistance du muscle à l’insuline favorisant le développement des tissus adipeux de la carcasse. Le turnover des nutriments et leur répartition entre les voies anaboliques (lipogenèse, glycogenèse) ou cataboliques (glycolyse, lipolyse, oxydation) intramusculaires restent à préciser. L’activité physique des animaux et la lutte contre le froid modifient les caractéristiques musculaires en favorisant le métabolisme oxydatif. La question qui se pose aujourd’hui est donc : l’optimisation des efficacités de production et d’utilisation de l’ATP est-elle compatible avec l’amélioration des qualités de la viande, déterminées notamment par les taux de glycogène et de lipides intramusculaire.
- Published
- 2000
- Full Text
- View/download PDF
20. O198 Profiling suckling beef and dairy cows’ responses to feed restriction
- Author
-
L. Barreto Mendes, J. Pires, A. Aliakbari, I. Ortigues-Marty, I. Cassar-Malek, F. Blanc, and A. De La Torre
- Published
- 2022
21. 41. Effects of breed, growth rate and dietary lipid concentration on lipophilic contaminant accumulation into growing cattle: insight from a physiologically-based toxicokinetic model
- Author
-
J. Albechaalany, C. Loncke, C. Driesen, P. Schmidely, I. Ortigues-Marty, M. Zennegg, D. Sauvant, and S. Lerch
- Published
- 2022
22. How to approach the resilience of livestock exposed to environmental challenges? Quantification of individual response and recovery by means of differential calculus
- Author
-
L. Barreto-Mendes, A. De La Torre, I. Ortigues-Marty, I. Cassar-Malek, J. Pires, and F. Blanc
- Published
- 2022
23. O204 A mechanistic physiologically-based toxicokinetic model of persistent organic pollutants transfer in growing cattle
- Author
-
S. Lerch, J. Albechaalany, C. Driesen, P. Schmidely, I. Ortigues-Marty, M. Zennegg, D. Sauvant, and C. Loncke
- Published
- 2022
24. O171 Exploring links among indicators of feed efficiency and resilience in Montbéliarde and Holstein cows
- Author
-
J. Pires, A. De La Torre, L. Barreto-Mendes, S. Bes, I. Constant, D. Roux, M. Tourret, F. Blanc, I. Cassar-Malek, and I. Ortigues-Marty
- Published
- 2022
25. Plasma proteins δ
- Author
-
P, Guarnido-Lopez, I, Ortigues-Marty, S, Taussat, C, Fossaert, G, Renand, and G, Cantalapiedra-Hijar
- Subjects
Male ,Eating ,Animals ,Urea ,Cattle ,Blood Proteins ,Ruminants ,Animal Feed ,Biomarkers ,Diet - Abstract
Identifying animals that are superior in terms of feed efficiency may improve the profitability and sustainability of the beef cattle sector. However, measuring feed efficiency is costly and time-consuming. Biomarkers should thus be explored and validated to predict between-animal variation of feed efficiency for both genetic selection and precision feeding. In this work, we aimed to assess and validate two previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma urea concentrations and the
- Published
- 2021
26. Identifying cattle with superior growth feed efficiency through their natural 15 N abundance and plasma urea concentration: a meta-analysis
- Author
-
Gonzalo Cantalapiedra-Hijar, Isabelle Morel, Bernard Sepchat, Céline Chantelauze, Gemma A. Miller, Carol-Anne Duthie, I. Ortigues-Marty, and Richard J. Dewhurst
- Subjects
2. Zero hunger - Abstract
The objective of this study was to test two candidate biomarkers of feed efficiency in growing cattle. A database was built using performance data from 13 trials conducted with growing heifers, steers and young bulls and testing 34 dietary treatments. The database included 769 individual records for animal performance and laboratory data for N isotopic discrimination measured in plasma or muscle (Δ 15 N animal-diet ; n = 749) and plasma urea concentration (n = 659). Feed conversion efficiency (FCE) and residual feed intake (RFI) criteria were calculated for a duration ranging between 56 and 259 d, depending on the trial. For FCE prediction, mixed models included the random effects of study, diet within-study and pen within-study (i.e. contemporary group; CG) allowing these effects to be progressively excluded from the relationship. For RFI prediction, simple linear regressions were tested with the CG effect removed from biomarker values before analysis. Better models were obtained with Δ 15 N animal-diet compared to plasma urea concentration, irrespective of using mean or individual values and regardless of the feed efficiency criterion. Prediction error (0.027 kg/kg) from mixed-effect models using mean FCE and Δ 15 N animal-diet values would allow discrimination of 2 dietary treatments or production conditions in terms of FCE if they differ by more than 0.10 kg/kg. The Δ 15 N animal-diet values showed a negative and significant (P15 N animal-diet values, while only extreme FCE animals could be discriminated when using plasma urea concentrations (P=0.002). No gain in feed efficiency prediction was observed when combining candidate biomarkers. However for FCE, when average daily gain data was combined with Δ 15 N animal-diet , the prediction at the individual level was strengthened compared to using only single predictors. Our findings confirm that Δ 15 N animal-diet may be useful to form groups of animals for precision feeding. Further studies are warranted, however, to evaluate the usefulness of this promising biomarker for genetic selection.
- Published
- 2021
27. Energy and Protein Metabolism and Nutrition
- Author
-
I. Ortigues-Marty and I. Ortigues-Marty
- Abstract
'This book is the result of the 2nd International Symposium on Energy and Protein Metabolism and Nutrition. It presents the latest results on energy and protein metabolism and nutrition. It is oriented towards livestock science but also addresses general aspects of protein and energy metabolism as applied to animals or biomedical sciences. The book is based around the following five key topics: • Nutrition and mitochondrial functions • Regulation of body composition and/or product quality by tissue metabolism •''Omics''in metabolism and nutrition studies • Coordination between tissues for the metabolic utilisation of nutrients • From the parts to the whole or how to use detailed information to answer applied questions Widely different approaches ranging from fundamental to integrative approaches are applied to key concepts of nutrition. Fundamental research is translated into practical outcomes through active links with applied research and practical applications. The newest research techniques and methods are also addressed and the outcomes presented provide an integrated view of this topic. The conclusions may eventually be integrated into systems of nutritional recommendations as new nutritional challenges emerge. This book will be of interest to all professionals and researchers who concern themselves with developments in animal and human nutrition.'
- Published
- 2023
28. Ryegrass-based diet and barley supplementation: Partition of nitrogenous nutrients among splanchnic tissues and hind limb in finishing lambs1
- Author
-
I. Savary-Auzeloux, L. Majdoub, N. Le Floc'h, and I. Ortigues-Marty
- Subjects
chemistry.chemical_classification ,medicine.medical_specialty ,General Medicine ,Metabolism ,Butyrate ,Biology ,Endocrinology ,chemistry ,Latin square ,Internal medicine ,Lipogenesis ,Genetics ,Propionate ,Hay ,medicine ,Animal Science and Zoology ,Hordeum vulgare ,Splanchnic ,Food Science - Abstract
Splanchnic metabolism of energy-yielding nutrients and their uptake by the hind limb were studied in finishing lambs receiving ryegrass harvested at grazing stage (ear at 10 cm) with or without barley supplementation. Six ruminally cannulated and multi-catherized lambs (40.2 +/- 1.5 kg) were fed with frozen ryegrass (RG) at 690 kJ of metabolizable energy intake (MEI).d(-1).BW-0.75 successively with and without barley supplementation (RG + B), according to a triplicated Latin square design. Barley supplementation represented 21% of DM intake and increased the MEI by 32% (P < 0.002). In ruminal fluid, barley supplementation increased the acetate and butyrate concentrations by 21.2 and 49.6%, respectively (P < 0.04), without modifying those of propionate. Thus, molar proportions of acetate and butyrate were not modified, and those of propionate tended (P < 0.06) to decrease from 26 to 23%. As a result, the net portal appearance of propionate was not modified. Net portal appearance of butyrate and beta-hydroxybutyrate increased (P < 0.03), and that of acetate was not modified. Consequently, hepatic up-take of butyrate increased and probably spared acetate from hepatic metabolism. The hepatic fractional extraction of propionate decreased (P < 0.03), whereas the net flux of lactate switched from a net release to a net uptake, suggesting an alteration in the contribution of gluconeogenic substrates to glucose synthesis without modification in net hepatic glucose release. As a consequence, barley supplementation increased net splanchnic release of acetate (P < 0.02), propionate (P < 0.001), and beta-hydroxybutyrate (P < 0.01) by 60, 157, and 78%, respectively. In addition, the net splanchnic release of insulin increased (P < 0.03) because of a decrease (P < 0.02) in its hepatic extraction. Despite those changes, the net uptake of nutrients by the hind limb was not modified and even decreased in the case of glucose (P < 0.02), suggesting a stimulation of lipogenesis in adipose tissues. Results from the present study suggested that supplementation of a ryegrass-based diet would likely have little effect on the orientation of muscle energy metabolism and on meat quality because the net uptake of nutrients by the hind limb was unchanged.
- Published
- 2003
29. Ryegrass-based diet and barley supplementation: Partition of energy-yielding nutrients among splanchnic tissues and hind limbs in finishing lambs1
- Author
-
L. Majdoub, M. Vermorel, and I. Ortigues-Marty
- Subjects
Genetics ,Animal Science and Zoology ,General Medicine ,Food Science - Published
- 2003
30. Influence of the para-aminohippuric acid analysis method on the net hepatic flux of nutrients in lactating cows
- Author
-
J M, Rodríguez-López, G, Cantalapiedra-Hijar, D, Durand, A, Isserty-Thomas, and I, Ortigues-Marty
- Subjects
Liver ,Dye Dilution Technique ,Animals ,Lactation ,Cattle ,Female ,p-Aminohippuric Acid ,Liver Circulation - Abstract
Para-aminohippuric acid (pAH) is a marker frequently used to measure plasma or blood flow. In sheep studies, it is recognized that its determination must include a deacetylation step to counteract the hepatic acetylation of pAH. Such a procedure is not of common usage in cattle studies although a recent suggestion of hepatic pAH acetylation in dairy cows may have important consequences for hepatic nutrient fluxes. The aims of this study were to evaluate pAH analytical methods according to international procedures of metrology and confirm hepatic acetylation of pAH in dairy cows. The effect of the matrix used to prepare the standard curve was tested, and the influence of the pAH analytical method on blood flows and subsequent net hepatic fluxes of nutrients was determined. For the first objective, accuracy profiles were established and bias, indicators of precision, and limits of quantification were reported for 2 analytical methods (without and with a pAH deacetylation step) using 2 different standard matrices (water and plasma). Second, the net hepatic flux of different nutrients was determined including or not the deacetylation step and preparing the standard curves in plasma using samples collected from 5 multicatheterized lactating Jersey cows. The choice of the matrix had a significant impact on plasma pAH concentrations as illustrated by accuracy profiles. Water matrix decreased (P0.01) the slope, y-intercept, and the absorbance at concentration 0 mg pAH/L of the standard curve in both methods (without and with the deacetylation), supporting that standards prepared in water should not be used to analyze plasma samples. Samples collected on cows confirmed hepatic acetylation of pAH across the liver. Deacetylation, performed using plasma as the standard matrix, increased (P0.05) plasma pAH concentrations from 18.4, 26, and 23.5 to 21.4, 28.9, and 27.3 mg/L in the artery, portal vein, and hepatic vein, respectively. Deacetylation decreased the hepatic venous and arterial plasma and blood flows (P0.05) by 9 and 55%, respectively, modifying the net hepatic flux of acetate, total amino acid, and oxygen by more than 19% (P0.05). In conclusion, our results highlight the importance of including a deacetylation step in the pAH analysis method in cattle studies and of using plasma as standard matrix.
- Published
- 2014
31. Energy metabolism in skeletal muscle of meat-producing animals
- Author
-
Patrick Herpin, I. Ortigues-Marty, Marie Damon, Y. Geay, Jean-François Hocquette, Station de recherches sur la nutrition des herbivores, Institut National de la Recherche Agronomique (INRA), Unité mixte de recherche veau et porc (UMR VP), and Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Rennes
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,medicine.medical_specialty ,Glycogen ,métabolisme énergétique ,muscle ,glycogène ,Insulin ,medicine.medical_treatment ,Physical activity ,Skeletal muscle ,qualité de la viande ,Biology ,Energy requirement ,Agricultural sciences ,chemistry.chemical_compound ,Endocrinology ,medicine.anatomical_structure ,chemistry ,Internal medicine ,Lipogenesis ,medicine ,Lipolysis ,triglyceride ,Sciences agricoles - Abstract
Le muscle est d’importance économique majeure chez les animaux producteurs de viande. Ses principales fonctions physiologiques sont la thermogenèse, la posture et l’activité physique de l’animal. Ces fonctions et la croissance du muscle ont des besoins spécifiques en énergie, entraînant parfois des compétitions pour l’utilisation des différents nutriments. Ces régulations métaboliques modifient les efficacités de production et d’utilisation de l’ATP, et certaines caractéristiques musculaires déterminantes pour les qualités de la viande. Par exemple, un métabolisme musculaire plus glycolytique est associé à une meilleure utilisation du glucose, à une plus grande sensibilité du muscle à l’insuline, à un développement accru du muscle, à une réduction de ses dépenses énergétiques, et à une augmentation de sa teneur en glycogène. L’amélioration de la croissance musculaire par la sélection génétique induit un métabolisme musculaire moins oxydatif avec, comme conséquence, moins de lipides intramusculaires. Une augmentation des apports énergétiques favorise les dépôts de protéines, de glycogène et de lipides intramusculaires. Toutefois, des apports excessifs induisent une résistance du muscle à l’insuline favorisant le développement des tissus adipeux de la carcasse. Le turnover des nutriments et leur répartition entre les voies anaboliques (lipogenèse, glycogenèse) ou cataboliques (glycolyse, lipolyse, oxydation) intramusculaires restent à préciser. L’activité physique des animaux et la lutte contre le froid modifient les caractéristiques musculaires en favorisant le métabolisme oxydatif. La question qui se pose aujourd’hui est donc : l’optimisation des efficacités de production et d’utilisation de l’ATP est-elle compatible avec l’amélioration des qualités de la viande, déterminées notamment par les taux de glycogène et de lipides intramusculaires ?, In meat-producing animals, skeletal muscle is a tissue of major economic importance. Its main physiological functions are thermogenesis, posture and physical activity. Each of these and muscle growth present specific energy requirements, which may be responsible for competitions between the different metabolic pathways of the utilisation of energy-yielding nutrients. These metabolic regulations modify the efficiencies of ATP production and utilisation, as well as some muscle characteristics which are essential for meat quality. For example, a more glycolytic muscle metabolism is associated with a better utilisation of glucose, a higher sensitivity of muscle to insulin, an increased muscle development, a reduction in its energy expenditure and an increase in its glycogen content. Improvement of muscle growth through genetic selection induces a less oxidative muscle metabolism associated with a lower intramuscular lipid content. A rise in the supply of energy-yielding nutrients is in favour of protein, glycogen and intramuscular lipid deposition. Nevertheless, an excess in energy may be responsible for an enhanced resistance of muscle to insulin which then favours carcass adiposity. The turnover and the partition of nutrients among the intramuscular anabolic (lipogenesis, glycogenesis) and catabolic (glycolysis, lipolysis, oxidation) pathways remain to be investigated. Physical activity of animals and cold adaptation modify muscle characteristics in favour of oxidative metabolism. The issue which remains to be addressed today is to determine whether the optimisation of the efficiency of ATP production and utilisation is compatible with the improvement of meat quality, especially through its glycogen and intramuscular lipid contents.
- Published
- 2000
32. Dietary nitrogen-to-energy ratio alters amino acid partition in the whole body and among the splanchnic tissues of growing rams
- Author
-
I, Savary-Auzeloux, G, Kraft, B J, Bequette, I, Papet, D, Rémond, and I, Ortigues-Marty
- Subjects
Male ,Kinetics ,Sheep ,Liver ,Leucine ,Nitrogen ,Phenylalanine ,Body Weight ,Animals ,Proteins ,Splanchnic Circulation ,Energy Intake - Abstract
The aim of this study was to determine whether subtle changes in the energy-to-N ratio of medium-concentrate diets alters hepatic export protein synthesis and the partition of protein metabolism in the whole body of growing rams. Rams (n = 6; 41.5 +/- 2.6 kg of BW) were fitted with catheters for measurement of Leu and Phe tracer kinetics across the portal drained-viscera (PDV) and liver. Rams were assigned to receive 3 dietary treatments according to a duplicated Latin square design. Animals received forage-concentrate-based diets that were balanced for ME and available N (CON), 20% imbalanced (reduced) in available N (LN), or 20% imbalanced in ME (LE). After 15 d on each experimental diet, [ring-(2)H(5)]Phe (4.3 micromolxkg(-1)xh(-1)) and [1-(13)C]Leu (8.6 micromolxkg(-1)xh(-1)) were continuously infused into the vena cava for 10 h and, over the last 7 h of infusion, matched sets of blood samples were taken. Daily BW gain was less (P0.05) for the LE (0.191 kgxd(-1)) diet compared with CON (0.265 kg/d) and LN (258 kgxd(-1)) diets. Compared with CON, whole body irreversible loss rate (ILR) of Leu and Phe was less (10 to 16%, P0.02) for LN and LE diets, which for Leu reflected its decreased (20 to 24%, P0.05) net PDV absorption. The decreased whole body ILR is due to a decreased PDV ILR in both diets with a relative contribution of the PDV to the whole body ILR decreased (P0.05) in the LN (27%) diet compared with the CON (36%) and LE (33%) diets. This decreased PDV ILR was associated with a decreased net Leu PDV uptake in LN and LE diets (-25 and -20%, respectively; P0.05). Conversely, the decreased whole body Phe ILR is explained by a decreased hepatic ILR (and contribution to the whole body ILR) and was associated with a decreased net hepatic uptake of Phe in LN (-25%) and LE (-20%) diets compared with CON (P = 0.03). The fractional and absolute synthesis rates of total proteins and albumin were decreased by 10% in LE animals (P0.05), whereas they were not affected by the LN diet. These results suggest a specific decreased utilization of Leu at the PDV due to a specific sparing mechanism in the LN diet. Conversely, a decreased Phe utilization occurred in the liver in both diets (due to a decreased export protein synthesis and a probable decreased oxidation in LE diet, whereas only oxidation is reduced in LN diet).
- Published
- 2010
33. Nitrogen- and energy-imbalanced diets affect hepatic protein synthesis and gluconeogenesis differently in growing lambs
- Author
-
G, Kraft, D, Gruffat, D, Dardevet, D, Rémond, I, Ortigues-Marty, and I, Savary-Auzeloux
- Subjects
Male ,Carbon Isotopes ,Sheep ,Nitrogen ,Gluconeogenesis ,Carbon Dioxide ,Diet ,Glucose ,Liver ,Protein Biosynthesis ,Animals ,Amino Acids ,Propionates ,Energy Metabolism - Abstract
The aim of this study was to assess the metabolic fate of AA (endogenous or export protein synthesis, gluconeogenesis, or oxidation) after an imbalanced supply of energy and N in the diet of growing lambs. Eighteen INRA 401 lambs (3 mo old, 29.7 +/- 0.45 kg of BW) were fed 3 experimental diets, one providing a N and energy supply according to recommended allowances (control), one with 23% less N supply relative to energy (LN), and one with 19% less ME supply relative to N (LE). Animals were assigned to 6 blocks of 3, with each animal receiving 1 of the 3 diets, and the animals from each block were slaughtered on the same day. Liver slices from these lambs were incubated in a minimum salt medium (Krebs-Henseleit) containing physiological concentrations of propionate and AA as energy and N sources, similarly across all 3 treatments. Protein synthesis (endogenous and export) using [U-(14)C]valine and [(35)S]methionine, gluconeogenesis from [1-(14)C]propionate and [U-(14)C]alanine, and oxidation were measured. A relative sparing of AA at the liver level was observed with the LN diet because of reduced urinary N (-42%, LN vs. control, P0.001). The AA were also directed toward anabolic purposes in the LN diet via an increased endogenous and total export protein synthesis (+51%, LN vs. control, P = 0.01; also observed for fibrinogen synthesis, but not for albumin or transferrin) associated with a tendency for increased gluconeogenesis from alanine (+58%, LN vs. LE, P = 0.08). On the other hand, the LE diet resulted in a marked loss of N in urine (+24%, LE vs. control, P0.05), but no notable effect of the LE diet was demonstrated for protein synthesis or gluconeogenesis ex vivo. These data demonstrate a more efficient utilization of AA for anabolic purposes in the lambs fed LN, probably via an activation of some AA transport systems, to address the shortage of nitrogenous nutrients in the LN diet. By contrast, no such adaptation occurred in the LE lambs, probably because the regulatory mechanisms that prevailed in this case were the nutrient supply or hormones, which were not altered in our ex vivo experimental model.
- Published
- 2009
34. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (beta-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach
- Author
-
C, Loncke, I, Ortigues-Marty, J, Vernet, H, Lapierre, D, Sauvant, and P, Nozière
- Subjects
Blood Glucose ,3-Hydroxybutyric Acid ,Portal Vein ,Animals ,Animal Nutritional Physiological Phenomena ,Digestion ,Lactic Acid ,Ruminants ,Fatty Acids, Volatile ,Animal Feed ,Diet - Abstract
The current trend in energy feeding systems for ruminants toward a nutrient-based system requires dietary energy supply to be determined in terms of amount and nature of absorbed energy-yielding nutrients. The objective of this study was to establish response equations on the net portal appearance (NPA) of VFA and glucose, and their secondary metabolites beta-hydroxybutyrate (BHBA) and lactate, to changes in intake level and chemical dietary characteristics based on the Institut National de la Recherche Agronomique Feed Evaluation System for Ruminants. Meta-analyses were applied on published data compiled from the FLORA database, which pools the results on net splanchnic nutrient fluxes in multi-catheterized ruminants from international publications. For each nutrient, several prediction variables were tested. We obtained robust models for intakes up to 30 g of DM x d(-1) x kg of BW(-1) and diets containing less than 70 g of concentrate per 100 g of DM. These models were designed to predict the NPA (mmol x h(-1) x kg of BW(-1)) of total VFA based on the amount of ruminally fermented OM (RfOM) intake [adjusted R(2) (R(2)(adj)) = 0.95; residual means square errors (RMSE) = 0.24], to predict VFA profile (mol/100 mol of total VFA) based on type of RfOM intake (acetate: R(2)(adj) = 0.85, RMSE = 2.2; propionate: R(2)(adj) = 0.76, RMSE = 2.2; butyrate: R(2)(adj) = 0.76, RMSE = 1.09), and to predict the NPA (mmol x h(-1) x kg of BW(-1)) of glucose based on the starch digested in the small intestine independent of ruminant species, and while presenting no interfering factors on the residuals and individual slopes. The model predicting the NPA (mmol x h(-1) x kg of BW(-1)) of BHBA based on the amount of RfOM intake (R(2)(adj) = 0.91; RMSE = 0.036) was species-dependent, and the model predicting NPA (mmol x h(-1) x kg of BW(-1)) of lactate based on starch digested in the rumen (R(2)(adj) = 0.77; RMSE = 0.042) presented a wide dispersion. However, the NPA (mmol x h(-1) x kg of BW(-1)) of BHBA was related to the NPA of both butyrate (R(2)(adj) = 0.85; RMSE = 0.054) and acetate (R(2)(adj) = 0.85; RMSE = 0.052), and the NPA (mmol x h(-1) x kg of BW (-1)) of lactate was related to the NPA of propionate (R(2)(adj) = 0.51; RMSE = 0.096). This research showed that it is possible to accurately predict the amount and nature of absorbed nutrient fluxes based on dietary characteristics in both sheep and cattle. This work aims to quantify the consequences of digestion and portal-drained viscera metabolism on nutrient availability. These results can provide deeper insight into biological processes and help develop improved tools for dietary formulation.
- Published
- 2008
35. Energy and protein metabolism and nutrition
- Author
-
I. Ortigues-Marty, N. Miraux, and W. Brand-Williams
- Subjects
chemistry.chemical_compound ,chemistry ,Biochemistry ,Protein metabolism ,Biology ,Energy (signal processing) - Published
- 2007
36. Editorial: The reporting of statistics in research articles is key to the understanding and reproducibility of good research in animal science.
- Author
-
Ortigues-Marty I, Stryhn H, Paquet E, Ampe B, Montoya CA, and Fenlon J
- Subjects
- Reproducibility of Results, Animals, Editorial Policies, Periodicals as Topic statistics & numerical data, Research Design standards
- Published
- 2024
- Full Text
- View/download PDF
37. Comparative analysis of signalling pathways in tissue protein metabolism in efficient and non-efficient beef cattle: acute response to an identical single meal size.
- Author
-
Guarnido-Lopez P, Ortigues-Marty I, David J, Polakof S, and Cantalapiedra-Hijar G
- Subjects
- Cattle, Animals, Male, Diet veterinary, Proteins, Starch, Ubiquitins, Animal Feed analysis, Eating physiology
- Abstract
Protein turnover has been associated to residual feed intake (RFI) in beef cattle. However, this relationship may be confounded by feeding level and affected by the composition of the diet being fed. Our aim was to assess postmortem the protein metabolism signalling pathways in skeletal muscle and liver of 32 Charolais young bulls with extreme RFI phenotypes. Bulls were fed two contrasting diets during the whole fattening period but were subjected to a similar and single nutritional stimulus, induced by their respective concentrate, just prior to slaughter. The key targets were protein degradation (autophagy and ubiquitin) and synthesis signalling pathways through western-blot analysis, as well as hepatic transaminase activity. To ensure a precise assessment of all animals at the same postprandial time, they were provided with a test meal (2.5 kg of either a high-starch and high-protein concentrate or high-fibre and low-protein concentrate) 3 hours prior to slaughter, irrespective of their RFI grouping. Blood and tissues were sampled at the slaughterhouse (3 h and 3 h30 postprandially, respectively). In response to an identical single meal size, efficient RFI animals showed higher (P < 0.05) postprandial plasma β-hydroxybutyrate concentrations and insulinemia (only with the high-starch concentrate) than non-efficient animals. Moreover, efficient RFI bulls had lower muscle (P = 0.04) and liver (P = 0.08) ubiquitin protein abundance (degradation pathway) and tended to have lower alanine transaminase activity in the liver (P = 0.06) compared to non-efficient bulls, regardless of diet. A positive correlation between protein degradation potential and amino acid catabolism was identified in this study (r = 0.52, P = 0.004), which was interpreted as being biologically linked to the RFI phenotype. Efficient RFI bulls also had a faster potential for protein synthesis in the muscle, as indicated by their greater ratio of phosphorylated to total form of ribosomal protein S6 kinase (P = 0.05), regardless of diet. Results on protein synthesis pathway in muscle and plasma metabolite concentrations suggested that efficient RFI cattle may have a faster nutrient absorption and insulin responsiveness after feeding than inefficient cattle. We did not find significant differences in hepatic protein synthesis pathways between the two RFI groups (P > 0.05). Our findings suggest that, in response to an identical single meal size, efficient RFI animals exhibited lower activation of tissue protein degradation pathways and faster muscle protein synthesis activation compared to their inefficient counterparts. This pattern was observed regardless of the composition of the tested meals., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
38. Review: Reducing enteric methane emissions improves energy metabolism in livestock: is the tenet right?
- Author
-
Morgavi DP, Cantalapiedra-Hijar G, Eugène M, Martin C, Noziere P, Popova M, Ortigues-Marty I, Muñoz-Tamayo R, and Ungerfeld EM
- Subjects
- Animals, Methane metabolism, Ruminants metabolism, Fermentation, Energy Metabolism, Rumen metabolism, Livestock metabolism, Microbiota
- Abstract
The production of enteric methane in the gastrointestinal tract of livestock is considered as an energy loss in the equations for estimating energy metabolism in feeding systems. Therefore, the spared energy resulting from specific inhibition of methane emissions should be re-equilibrated with other factors of the equation. And, it is commonly assumed that net energy from feeds increases, thus benefitting production functions, particularly in ruminants due to the important production of methane in the rumen. Notwithstanding, we confirm in this work that inhibition of emissions in ruminants does not transpose into consistent improvements in production. Theoretical calculations of energy flows using experimental data show that the expected improvement in net energy for production is small and difficult to detect under the prevailing, moderate inhibition of methane production (≈25%) obtained using feed additives inhibiting methanogenesis. Importantly, the calculation of energy partitioning using canonical models might not be adequate when methanogenesis is inhibited. There is a lack of information on various parameters that play a role in energy partitioning and that may be affected under provoked abatement of methane. The formula used to calculate heat production based on respiratory exchanges should be validated when methanogenesis is inhibited. Also, a better understanding is needed of the effects of inhibition on fermentation products, fermentation heat, and microbial biomass. Inhibition induces the accumulation of H
2 , the main substrate used to produce methane, that has no energetic value for the host, and it is not extensively used by the majority of rumen microbes. Currently, the fate of this excess of H2 and its consequences on the microbiota and the host are not well known. All this additional information will provide a better account of energy transactions in ruminants when enteric methanogenesis is inhibited. Based on the available information, it is concluded that the claim that enteric methane inhibition will translate into more feed-efficient animals is not warranted., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
39. Exploration of robustness indicators using adaptive responses to short-term feed restriction in suckling primiparous beef cows.
- Author
-
De La Torre A, Barreto-Mendes L, Pires JAA, Cassar-Malek I, Ortigues-Marty I, and Blanc F
- Subjects
- 3-Hydroxybutyric Acid, Animal Feed, Animals, Cattle, Diet veterinary, Energy Metabolism, Female, Milk metabolism, Fatty Acids, Nonesterified, Lactation physiology
- Abstract
Animal robustness is a complex trait of importance for livestock production systems and genetic selection. Phenotyping is essential for evaluation of the adaptation of different genotypes to changing environments. This study tested an experimental framework to induce marked deviations in the adaptive responses of suckling beef cows and to identify relevant indicators of responses to characterise individual differences in the robustness of cows. The production and metabolic responses of primiparous suckling Charolais cows to two periods of feed restriction (FR, 50% of their net energy requirements) of different durations were monitored. After calving, 13 cows (aged 39 ± 2 months, BW of 680 ± 42 kg at calving) had ad libitum access to a diet composed of hay and supplemented with concentrate to meet their energy and protein requirements. Starting at 54 ± 6 days postcalving, the cows underwent two periods of FR: 4 days of FR (FR4), which was followed by 17 days of ad libitum intake to study the recovery from FR4, and 10 days of FR (FR10), which was followed by 18 days of ad libitum intake to study the recovery from FR10. The milk yield (MY), BW, body condition score and plasma non-esterified fatty acid (NEFA), β-hydroxybutyrate, glucose and urea concentrations were measured before, during and after each FR. Among all measured variables, the MY and NEFA concentrations showed the most significant changes in response to FR. A functional data analysis approach was applied to the MY and NEFA data to model the adaptive responses and extract quantifiable indicators of deviation and recovery. Linear correlations (P < 0.03-0.07) between FR4 and FR10 were found for some indicators describing MY and NEFA levels before and after FR. The overall repeatability of MY and NEFA responses between both FR accounted for 46% based on quartile analysis performed on average responses. Moreover, the variance in both the MY and NEFA variables did not differ significantly between FR4 and FR10, despite a trend for higher variances in FR10. Altogether, (1) the calculated variables derived from the functional data analysis of the time patterns of the MY and NEFA accounted for the differences in the cow responses to FR, and (2) the animal responses appeared to show concordance between FR4 and FR10. In conclusion, short-term FR is a relevant framework for studying productive and metabolic adaptive responses in suckling cows and allows the identification of potential robustness indicators., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
40. Protein metabolism, body composition and oxygen consumption in young bulls divergent in residual feed intake offered two contrasting forage-based diets.
- Author
-
Guarnido-Lopez P, Ortigues-Marty I, Salis L, Chantelauze C, Bes A, Nozière P, and Cantalapiedra-Hijar G
- Subjects
- Animals, Body Composition, Cattle, Eating, Male, Oxygen Consumption, Zea mays, Animal Feed analysis, Diet veterinary
- Abstract
Protein metabolism and body composition have been identified as major determinants of residual feed intake (RFI) in beef cattle fed high-starch fattening diets. This study aimed to evaluate if these two identified RFI determinants in beef cattle are the same across two contrasting silage-based diets. During two consecutive years, an 84-day feed efficiency test (Test A) immediately followed by a second 112-day feed efficiency test (Test B) was carried out using a total of 100 animals offered either one of two diets (either corn silage- or grass silage-based) over 196 days. At the end of Test A, the 32 animals most divergent for RFI (16 extreme RFI animals per diet, eight low RFI and eight high RFI) were identified and evaluated during Test B for their i) N use efficiency (NUE; N retention/N intake) calculated either from a 10-d nitrogen balance trial or from estimations based on body composition changes occurring during the whole experiment (Test A and Test B; 196 days), ii) carcass and whole-body protein turnover rates analysed through the 3-methyl-histidine urinary excretion and the N isotopic turnover rates of urine, respectively, and iii) body composition measured at the slaughterhouse at the end of Test B. Oxygen consumption was measured during Test B for the 100 animals by two GreenFeed systems. Irrespective of the diet, efficient RFI animals tended (P = 0.08) to improve their NUE when N retention was estimated for 196 days or when considering their lower urinary urea-N to total N ratio (P = 0.03). In contrast, NUE calculated during the 10-d N balance showed no differences (P = 0.65) across RFI groups suggesting that this method may not be suitable to capture small NUE differences. Efficient RFI individuals presented higher dressing percentage and muscle deposition in the carcass (P = 0.003) but lighter rumen (P = 0.001), and a trend for lower oxygen consumption (P = 0.08) than inefficient RFI animals irrespective of the diet. Lower protein degradation rates of skeletal muscle and lower protein synthesis rates of plasma proteins were found in efficient RFI cattle but only with the corn silage-based diet (RFI × Diet; P = 0.02). The higher insulinaemia associated with the corn silage-based diet (P = 0.001) seemed to be a key metabolic feature explaining the positive association between protein turnover and RFI only in this diet. Feed N was more efficiently used for growth by efficient RFI animals regardless of the diet but lower protein turnover rates in efficient RFI animals were only observed with corn silage-based diets., (Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
41. Effects of metabolizable energy intake on post weaning lamb growth performance, carcass tissue composition and internal fat depend on animal characteristics: A meta-analysis.
- Author
-
Ben Ettoumia R, Vernet J, Ortigues-Marty I, Kraiem K, and Majdoub-Mathlouthi L
- Subjects
- Adipose Tissue, Animals, Body Composition, Diet veterinary, Sheep, Weaning, Animal Feed analysis, Energy Intake
- Abstract
This study aimed to establish the quantitative relationship between metabolisable energy intake (MEI) and growth performance, carcass tissue composition and internal fat, taking into consideration animal precocity, maturity and tail nature. Data from 67 publications were used in the meta-analysis. Diets were characterized and three classes were identified (low medium and high energy density diets). Breeds were characterized according to tail nature, precocity and maturity stage. Average daily gain (ADG) responded to MEI in all animals weighing less than 60% of their adult weight regardless their precocity or their tail nature. At the same level of MEI, the higher the diet energy density, the higher the ADG. In animals weighing less than 42% of adult weight and receiving a high starch diet, carcass muscle and internal fat responded to MEI. Whereas, for animals that weighed between 43% and 75% of adult weight, increases in MEI influenced carcass adipose tissue., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
42. Common and diet-specific metabolic pathways underlying residual feed intake in fattening Charolais yearling bulls.
- Author
-
Jorge-Smeding E, Bonnet M, Renand G, Taussat S, Graulet B, Ortigues-Marty I, and Cantalapiedra-Hijar G
- Subjects
- Animals, Body Composition, Cattle, Diet classification, Feeding Behavior, Male, Animal Feed analysis, Animal Nutritional Physiological Phenomena, Diet veterinary, Eating, Metabolome, Poaceae chemistry, Zea mays chemistry
- Abstract
Residual feed intake (RFI) is one of the preferred traits for feed efficiency animal breeding. However, RFI measurement is expensive and time-consuming and animal ranking may depend on the nature of the diets. We aimed to explore RFI plasma biomarkers and to unravel the underlying metabolic pathways in yearling bulls fed either a corn-silage diet rich in starch (corn diet) or a grass-silage diet rich in fiber (grass diet). Forty-eight extreme RFI animals (Low-RFI, n = 24, versus High-RFI, n = 24, balanced per diet) were selected from a population of 364 Charolais bulls and their plasma was subjected to a targeted LC-MS metabolomic approach together with classical metabolite and hormonal plasma analyses. Greater lean body mass and nitrogen use efficiency, and lower protein turnover were identified as common mechanisms underlying RFI irrespective of the diet. On the other hand, greater adiposity and plasma concentrations of branched-chain amino acids (BCAA) together with lower insulin sensitivity in High-RFI animals were only observed with corn diet. Conversely, greater plasma concentrations of BCAA and total triglycerides, but similar insulin concentrations were noted in efficient RFI cattle with grass diet. Our data suggest that there are diet-specific mechanisms explaining RFI differences in fattening Charolais yearling bulls., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
43. Plasma proteins δ 15 N vs plasma urea as candidate biomarkers of between-animal variations of feed efficiency in beef cattle: Phenotypic and genetic evaluation.
- Author
-
Guarnido-Lopez P, Ortigues-Marty I, Taussat S, Fossaert C, Renand G, and Cantalapiedra-Hijar G
- Subjects
- Animals, Biomarkers, Cattle genetics, Diet veterinary, Eating, Male, Ruminants, Animal Feed, Blood Proteins analysis, Urea blood
- Abstract
Identifying animals that are superior in terms of feed efficiency may improve the profitability and sustainability of the beef cattle sector. However, measuring feed efficiency is costly and time-consuming. Biomarkers should thus be explored and validated to predict between-animal variation of feed efficiency for both genetic selection and precision feeding. In this work, we aimed to assess and validate two previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma urea concentrations and the
15 N natural abundance in plasma proteins (plasma δ15 N), to predict the between-animal variation in feed efficiency when animals were fed two contrasted diets (high-starch vs high-fibre diets). We used an experimental network design with a total of 588 young bulls tested for feed efficiency through two different traits (feed conversion efficiency [FCE] and residual feed intake [RFI]) during at least 6 months in 12 cohorts (farm × period combination). Animals reared in the same cohort, receiving the same diet and housed in the same pen, were considered as a contemporary group (CG). To analyse between-animal variations and explore relationships between biomarkers and feed efficiency, two statistical approaches, based either on mixed-effect models or regressions from residuals, were conducted to remove the between-CG variability. Between-animal variation of plasma δ15 N was significantly correlated with feed efficiency measured through the two criteria traits and regardless of the statistical approach. Conversely, plasma urea was not correlated to FCE and showed only a weak, although significant, correlation with RFI. The response of plasma δ15 N to FCE variations was higher when animals were fed a high-starch compared to a high-fibre diet. In addition, we identified two dietary factors, the metabolisable protein to net energy ratio and the rumen protein balance that influenced the relation between plasma δ15 N and FCE variations. Concerning the genetic evaluation, and despite the moderate heritability of the two biomarkers (0.28), the size of our experimental setup was insufficient to detect significant genetic correlations between feed efficiency and the biomarkers. However, we validated the potential of plasma δ15 N to phenotypically discriminate two animals reared in identical conditions in terms of feed efficiency as long as they differ by at least 0.049 g/g for FCE and 1.67 kg/d for RFI. Altogether, the study showed phenotypic, but non-genetic, relationships between plasma proteins δ15 N and feed efficiency that varied according to the efficiency index and the diet utilised., (Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
44. Methionine-balanced diets improve cattle performance in fattening young bulls fed high-forage diets through changes in nitrogen metabolism.
- Author
-
Cantalapiedra-Hijar G, Ortigues-Marty I, Sepchat B, Titgemeyer E, and Bahloul L
- Subjects
- Adipose Tissue growth & development, Animals, Cattle, Dietary Proteins metabolism, Eating physiology, Male, Animal Feed analysis, Diet veterinary, Dietary Supplements, Methionine administration & dosage, Nitrogen metabolism
- Abstract
Ruminants fed high-forage diets usually have a low feed efficiency, and their performances might be limited by methionine (Met) supply. However, the INRA feeding system for growing cattle does not give recommendation for this amino acid (AA). This study aimed to assess the effects of Met-balanced diets on animal performance and N metabolism in young bulls fed high-forage diets formulated at or above protein requirements. Four diets resulting from a factorial arrangement of two protein levels (Normal (13·5 % crude protein) v. High (16·2 % crude protein)) crossed with two Met concentrations (unbalanced (2·0 % of metabolisable protein) v. balanced (2·6 % of metabolisable protein)) were tested on thirty-four fattening Charolais bulls for 7 months before slaughter. Animal growth rate was greater in Met-balanced diets (+8 %; P = 0·02) with a trend for a greater impact in High v. Normal protein diets (P = 0·10). This trend was observed in lower plasma concentrations of branched-chain AA only when Met supplementation was applied to the Normal protein diet (P ≤ 0·06) suggesting another co-limiting AA at Normal protein level. Feed conversion efficiency and N use efficiency were unaffected by Met supplementation (P > 0·05). However, some plasma indicators suggested a better use of AA when High protein diets were balanced v. unbalanced in Met. The proportion of total adipose tissue in carcass increased (+5 percent units; P = 0·03), whereas that of muscle decreased on average 0·8 percent units (P = 0·05) in Met-balanced diets. Our results justify the integration of AA into dietary recommendations for growing cattle.
- Published
- 2020
- Full Text
- View/download PDF
45. Net hepatic release of glucose from precursor supply in ruminants: a meta-analysis.
- Author
-
Loncke C, Nozière P, Vernet J, Lapierre H, Bahloul L, Al-Jammas M, Sauvant D, and Ortigues-Marty I
- Subjects
- Animals, Diet, Gluconeogenesis, Glucose metabolism, Liver metabolism, Ruminants physiology
- Abstract
For their glucose supply, ruminants are highly dependent on the endogenous synthesis in the liver, but despite the numerous studies that evaluated hepatic glucose production, very few simultaneously measured hepatic glucose production and uptake of all precursors. As a result, the variability of precursor conversion into glucose in the liver is not known. The present study aimed at investigating by meta-analysis the relationships between hepatic glucose net release and uptake of precursors. We used the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which gathers international results on net nutrient fluxes at splanchnic level measured in catheterized animals. Response equations were developed for intakes up to 41 g DM intake/kg BW per day of diets varying from 0 to 100 g of concentrate/100 g DM in the absence of additives. The net hepatic uptake of propionate, α-amino-N and l-lactate was linearly and better related to their net portal appearance (NPA) than to their afferent hepatic flux. Blood flow data were corrected for lack of deacetylation of the para-aminohippuric acid, and this correction was shown to impact the response equations. To develop response equations between the availability of precursors (portal appearance and hepatic uptake) and net glucose hepatic release, missing data on precursor fluxes were predicted from dietary characteristics using previously developed response equations. Net hepatic release of glucose was curvilinearly related to hepatic supply and uptake of the sum of precursors, suggesting a lower conversion rate of precursors at high precursor supply. Factors of variation were explored for the linear portion of this relationship, which applied to NPA of precursors ranging from 0.99 to 9.60 mmol C/kg BW per h. Hepatic release of glucose was shown to be reduced by the portal absorption of glucose from diets containing bypass starch and to be increased by an increased uptake of β-hydroxybutyrate indicative of higher body tissue mobilization. These relationships were affected by the physiological status of the animals. In conclusion, we established equations that quantify the net release of glucose by the liver from the net availability of precursors. They provide a quantitative overview of factors regulating hepatic glucose synthesis in ruminants. These equations can be linked with the predictions of portal absorption of nutrients from intake and dietary characteristics, and provide indications of glucose synthesis from dietary characteristics.
- Published
- 2020
- Full Text
- View/download PDF
46. The origin of N isotopic discrimination and its relationship with feed efficiency in fattening yearling bulls is diet-dependent.
- Author
-
Nasrollahi SM, Meale SJ, Morgavi DP, Schiphorst AM, Robins RJ, Ortigues-Marty I, and Cantalapiedra-Hijar G
- Subjects
- Animal Nutritional Physiological Phenomena physiology, Animals, Cattle, Dietary Carbohydrates metabolism, Dietary Fiber metabolism, Digestion physiology, Feces chemistry, Male, Rumen microbiology, Ruminants metabolism, Starch metabolism, Animal Feed analysis, Diet methods, Nitrogen metabolism
- Abstract
Nitrogen (N) isotopic discrimination (i.e. the difference in natural 15N abundance between the animal proteins and the diet; Δ15N) is known to correlate with N use efficiency (NUE) and feed conversion efficiency (FCE) in ruminants. However, results from the literature are not always consistent across studies, likely due to isotopic discrimination pathways that may differ with the nature of diets. The objective of the present study was to assess at which level, from rumen to tissues, Δ15N originates and becomes related to NUE and FCE in fattening yearling bulls when they are fed two contrasted diets. Twenty-four Charolais yearling bulls were randomly divided into two groups and fed during 8 months, from weaning to slaughter, either 1) a high starch diet based on corn silage supplying a balanced N to energy ratio at the rumen level (starch) or 2) a high fiber diet based on grass silage supplying an excess of rumen degradable N (fiber). All animals were slaughtered and samples of different digestive pools (ruminal, duodenal, ileal and fecal contents), animal tissues (duodenum, liver and muscle), blood and urine were collected for each animal. Ruminal content was further used to isolate liquid-associated bacteria (LAB), protozoa and free ammonia, while plasma proteins were obtained from blood. All samples along with feed were analyzed for their N isotopic composition. For both diets, the digestive contribution (i.e. the N isotopic discrimination occurring before absorption) to the Δ15N observed in animal tissues accounted for 65 ± 11%, leaving only one third to the contribution of post-absorptive metabolism. Concerning the Δ15N in digestive pools, the majority of these changes occurred in the rumen (av. Δ15N = 2.12 ± 0.66‰), with only minor 15N enrichments thereafter (av. Δ15N = 2.24 ± 0.41‰), highlighting the key role of the rumen on N isotopic discrimination. A strong, significant overall relationship (n = 24) between Δ15N and FCE or NUE was found when using any post-absorptive metabolic pool (duodenum, liver, or muscle tissues, or plasma proteins; 0.52 < r < 0.73; P ≤ 0.01), probably as these pools reflect both digestive and post-absorptive metabolic phenomena. Fiber diet compared to starch diet had a lower feed efficiency and promoted higher (P ≤ 0.05) Δ15N values across all post-absorptive metabolic pools and some digestive pools (ruminal, duodenal, and ileal contents). The within-diet relationship (n = 12) between Δ15N and feed efficiency was not as strong and consistent as the overall relationship, with contrasted responses between the two diets for specific pools (diet x pool interaction; P ≤ 0.01). Our results highlight the contrasted use of N at the rumen level between the two experimental diets and suggests the need for different equations to predict FCE or NUE from Δ15N according to the type of diet. In conclusion, rumen digestion and associated microbial activity can play an important role on N isotopic discrimination so rumen effect related to diet may interfere with the relationship between Δ15N and feed efficiency in fattening yearling bulls., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
47. Natural 15N abundance in specific amino acids indicates associations between transamination rates and residual feed intake in beef cattle.
- Author
-
Cantalapiedra-Hijar G, Guarnido P, Schiphorst AM, Robins RJ, Renand G, and Ortigues-Marty I
- Subjects
- Animals, Male, Rumen metabolism, Silage analysis, Amino Acids chemistry, Amino Acids metabolism, Animal Feed analysis, Cattle physiology, Diet veterinary, Feeding Behavior, Nitrogen Isotopes chemistry
- Abstract
Improving the ability of animals to convert feed resources into food for humans is needed for more sustainable livestock systems. Genetic selection for animals eating less while maintaining their performance (i.e., low residual feed intake [RFI]) appears a smart strategy but its effectiveness relies on high-throughput animal phenotyping. Here, we explored plasma nitrogen (N) isotope ratios in an attempt to identify easily superior young bulls in terms of RFI. For this, 48 Charolais young bulls fed two contrasting diets (corn vs. grass silage diets) were selected from a larger population as extreme RFI animals (24 low-RFI vs. 24 high-RFI) and their plasma analyzed for natural 15N abundance (δ15N) in the whole protein (bulk protein) and in the individual protein-bound amino acids (PbAA). For the first time, we showed that the δ 15N in plasma bulk protein differed (P = 0.007) between efficient (low-RFI) and inefficient (high-RFI) cattle regardless of diet. Furthermore, most analyzed PbAA followed the same trend as the bulk protein, with lower (P < 0.05) δ 15N values in more efficient (low-RFI) compared with less efficient (high-RFI) cattle, again regardless of diet. The only three exceptions were Phe, Met, and Lys (P > 0.05) for which the first metabolic reaction before being catabolized does not involve transamination, a pathway known naturally to enrich AAs in 15N. The contrasted isotopic signatures across RFI groups only in those PbAA undergoing transamination are interpreted as differences in transamination rates and N-use efficiency between low- and high-RFI phenotypes. Natural isotopic N signatures in bulk proteins and specific PbAA can be proposed as biomarkers of RFI in growing beef cattle fed different diets. However, the current study cannot delineate whether this effect only occurs post-absorption or to some extent also in the rumen. Our data support the conclusion that most efficient cattle in terms of RFI upregulate N conservation mechanisms compared with less efficient cattle and justify future research on this topic., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2020
- Full Text
- View/download PDF
48. Contribution of nutrient fluxes to the evolution of the net energy systems, example of the INRA feeding system for beef cattle.
- Author
-
Ortigues-Marty I, Agabriel J, Vernet J, Sepchat B, Al-Jammas M, and Nozière P
- Abstract
Energy feeding systems define energy as a whole, but progress made to define metabolizable energy (ME) as the sum of the metabolizable nutrients produced by digestion and available for tissue metabolism in a wide range of nutritional situations opens the way to quantitatively model and predict nutrient fluxes between and within tissues and organs and improve predictions of energy use. This review addresses the contribution of nutrient flux concepts and data to the evolution of the Institut de la Recherche Agronomique (INRA) energy feeding system for growing and fattening cattle and evaluates the outcomes on the net energy (NE) requirements. It summarizes recent progress made to quantitatively predict nutrient fluxes both at digestive and visceral levels. It reviews how nutrient flux concepts and results were introduced in the recently updated INRA feeding system, resulting in improvements in the accuracy of the revised digestible energy (DE) and ME value of diets. The use of an independent database showed that for diets fed to fattening cattle, DE and ME concentrations were downgraded for low-energy-dense diets and upgraded for high-energy-dense diets. We are also showing that compared with its previous version, the updated INRA system improves the quantitative relationship between ME supply and flows of metabolizable nutrients. Evidence is provided on how measured nutrient fluxes at portal level were used to evaluate the predicted flows of metabolizable nutrients. This review then revisits the NE values of diets for fattening cattle as defined by the INRA feeding system and not updated yet. Using an independent database and at similar ME intake, carcass composition was shown to be linearly related to the energy density of diets for fiber-rich diets but not for concentrate-rich diets, suggesting that the efficiency of energy utilization of ME into NE is not linearly related to differences in the composition of the gain. Accounting for the balance of metabolizable nutrients or their proxies in models used to predict carcass composition from ME intake can improve predictions. Overall partitioning aggregated energy fluxes into their subcomponent nutrient fluxes in a more physiological approach offers promising perspectives for the evolution of NE feeding systems., (© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2019
- Full Text
- View/download PDF
49. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle.
- Author
-
Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, Guan LL, Hegarty R, Kenny DA, McGee M, Plastow G, Relling A, and Ortigues-Marty I
- Subjects
- Animals, Body Composition, Cattle genetics, Cattle growth & development, Diet veterinary, Lipid Metabolism, Phenotype, Rumen metabolism, Rumen microbiology, Animal Feed analysis, Cattle physiology, Eating, Energy Metabolism, Feeding Behavior, Genetic Variation
- Abstract
Animal's feed efficiency in growing cattle (i.e. the animal ability to reach a market or adult BW with the least amount of feed intake), is a key factor in the beef cattle industry. Feeding systems have made huge progress to understand dietary factors influencing the average animal feed efficiency. However, there exists a considerable amount of animal-to-animal variation around the average feed efficiency observed in beef cattle reared in similar conditions, which is still far from being understood. This review aims to identify biological determinants and molecular pathways involved in the between-animal variation in feed efficiency with particular reference to growing beef cattle phenotyped for residual feed intake (RFI). Moreover, the review attempts to distinguish true potential determinants from those revealed through simple associations or indirectly linked to RFI through their association with feed intake. Most representative and studied biological processes which seem to be connected to feed efficiency were reviewed, such as feeding behaviour, digestion and methane production, rumen microbiome structure and functioning, energy metabolism at the whole body and cellular levels, protein turnover, hormone regulation and body composition. In addition, an overall molecular network analysis was conducted for unravelling networks and their linked functions involved in between-animal variation in feed efficiency. The results from this review suggest that feeding and digestive-related mechanisms could be associated with RFI mainly because they co-vary with feed intake. Although much more research is warranted, especially with high-forage diets, the role of feeding and digestive related mechanisms as true determinants of animal variability in feed efficiency could be minor. Concerning the metabolic-related mechanisms, despite the scarcity of studies using reference methods it seems that feed efficient animals have a significantly lower energy metabolic rate independent of the associated intake reduction. This lower heat production in feed efficient animals may result from a decreased protein turnover and a higher efficiency of ATP production in mitochondria, both mechanisms also identified in the molecular network analysis. In contrast, hormones and body composition could not be conclusively related to animal-to-animal variation in feed efficiency. The analysis of potential biological networks underlying RFI variations highlighted other significant pathways such as lipid metabolism and immunity and stress response. Finally, emerging knowledge suggests that metabolic functions underlying genetic variation in feed efficiency could be associated with other important traits in animal production. This emphasizes the relevance of understanding the biological basis of relevant animal traits to better define future balanced breeding programmes.
- Published
- 2018
- Full Text
- View/download PDF
50. Nitrogen isotopic fractionation as a biomarker for nitrogen use efficiency in ruminants: a meta-analysis.
- Author
-
Cantalapiedra-Hijar G, Dewhurst RJ, Cheng L, Cabrita ARJ, Fonseca AJM, Nozière P, Makowski D, Fouillet H, and Ortigues-Marty I
- Subjects
- Animal Nutritional Physiological Phenomena, Animals, Biomarkers, Diet, Digestion, Female, Lactation, Milk, Nitrogen Isotopes analysis, Rumen, Dietary Proteins metabolism, Nitrogen metabolism, Ruminants physiology
- Abstract
Animal proteins are naturally 15N enriched relative to the diet and the extent of this difference (Δ15Nanimal-diet or N isotopic fractionation) has been correlated to N use efficiency (NUE; N gain or milk N yield/N intake) in some recent ruminant studies. The present study used meta-analysis to investigate whether Δ15Nanimal-diet can be used as a predictor of NUE across a range of dietary conditions, particularly at the level of between-animal variation. An additional objective was to identify variables related to N partitioning explaining the link between NUE and Δ15Nanimal-diet. Individual values from eight publications reporting both NUE and Δ15Nanimal-diet for domestic ruminants were used to create a database comprising 11 experimental studies, 41 treatments and individual animal values for NUE (n=226) and Δ15Nanimal-diet (n=291). Data were analyzed by mixed-effect regression analysis taking into account experimental factors as random effects on both the intercept and slope of the model. Diets were characterized according to the INRA feeding system in terms of N utilization at the rumen, digestive and metabolic levels. These variables were used in a partial least squares regression analysis to predict separately NUE and Δ15Nanimal-diet variation, with the objective of identifying common variables linking NUE and Δ15Nanimal-diet. For individuals reared under similar conditions (within-study) and at the same time (within-period), the variance of NUE and Δ15Nanimal-diet not explained by dietary treatments (i.e. between-animal variation plus experimental error) was 35% and 55%, respectively. Mixed-effect regression analysis conducted with treatment means showed that Δ15Nanimal-diet was significantly and negatively correlated to NUE variation across diets (NUE=0.415 -0.055×Δ15Nanimal-diet). When using individual values and taking into account the random effects of study, period and diet, the relationship was also significant (NUE=0.358 -0.035×Δ15Nanimal-diet). However, there may be a biased prediction for animals close to zero, or in negative, N balance. When using a novel statistical approach, attempting to regress between-animal variation in NUE on between-animal variation in Δ15Nanimal-diet (without the influence of experimental factors), the negative relationship was still significant, highlighting the ability of Δ15Nanimal-diet to capture individual variability. Among the studied variables related to N utilization, those concerning N efficiency use at the metabolic level contributed most to predict both Δ15Nanimal-diet and NUE variation, with rumen fermentation and digestion contributing to a lesser extent. This study confirmed that on average Δ15Nanimal-diet can predict NUE variation across diets and across individuals reared under similar conditions.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.