14 results on '"Hypersharpening"'
Search Results
2. Spatial Resolution Enhancement of Satellite Hyperspectral Data via Nested Hypersharpening With Sentinel-2 Multispectral Data
- Author
-
Luciano Alparone, Alberto Arienzo, and Andrea Garzelli
- Subjects
Environmental mapping and analysis program (EnMAP) ,hypersharpening ,hyperspectral (HS) image data ,HS pansharpening ,PRISMA ,Sentinel-2 ,Ocean engineering ,TC1501-1800 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
This article presents an original method for the spatial resolution enhancement of satellite hyperspectral (HS) data by means of the Sentinel-2 visible and near infrared (VNIR) and short-wave infrared bands at 10 and 20 m spatial resolution. Presently, HS data are available from PRISMA (Italian acronym for HS precursor of the application mission) and Environmental Mapping and Analysis Program (EnMAP): both map the spectral interval of the solar radiation onto 240 and 224 bands, respectively, with 10 and 6.5/10 nm widths. A 5 m × 5 m panchromatic (PAN) band is also acquired by PRISMA. When the PAN band is unavailable, or better, the higher spatial resolution sharpening band is not unique, advantage can be taken from the hypersharpening protocol. First, the 20-m bands of Sentinel-2 are hypersharpened to 10 m by means of the four 10-m VNIR bands of the same instrument. Then, the 10-m hypersharpened bands of Sentinel-2 are used to sharpen the 30-m bands of PRISMA at 10 m as well, still according to the hypersharpening protocol. Eventually, the 10- m hypersharpened bands are pansharpened at 5 m by means of the PAN image, if available. Results show that for PRISMA the nested hypersharpening followed by pansharpening is better than plain HS pansharpening, both visually and according to full-scale indexes of spectral and spatial consistence. For EnMAP data, in which the PAN image is missing, the improvement of the fused data with respect to the original EnMAP and Sentinel-2 data has been quantified by means of two novel statistical indexes capable of measuring the spatial and intersensor consistencies between sharpened and sharpening data.
- Published
- 2024
- Full Text
- View/download PDF
3. Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability.
- Author
-
Brezini, Salah Eddine and Deville, Yannick
- Subjects
- *
MULTISPECTRAL imaging , *IMAGE fusion , *REMOTE sensing , *SPATIAL resolution , *COMPUTATIONAL complexity , *UNITS of time - Abstract
The aim of fusing hyperspectral and multispectral images is to overcome the limitation of remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this end, several hypersharpening methods have been developed, however most of them do not consider the spectral variability phenomenon; therefore, neglecting this phenomenon may cause errors, which leads to reducing the spatial and spectral quality of the sharpened products. Recently, new approaches have been proposed to tackle this problem, particularly those based on spectral unmixing and using parametric models. Nevertheless, the reported methods need a large number of parameters to address spectral variability, which inevitably yields a higher computation time compared to the standard hypersharpening methods. In this paper, a new hypersharpening method addressing spectral variability by considering the spectra bundles-based method, namely the Automated Extraction of Endmember Bundles (AEEB), and the sparsity-based method called Sparse Unmixing by Variable Splitting and Augmented Lagrangian (SUnSAL), is introduced. This new method called Hyperspectral Super-resolution with Spectra Bundles dealing with Spectral Variability (HSB-SV) was tested on both synthetic and real data. Experimental results showed that HSB-SV provides sharpened products with higher spectral and spatial reconstruction fidelities with a very low computational complexity compared to other methods dealing with spectral variability, which are the main contributions of the designed method. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability
- Author
-
Salah Eddine Brezini and Yannick Deville
- Subjects
spectral variability ,spectral unmixing ,hypersharpening ,fusion ,hyperspectral/multispectral image ,spectra bundles ,Chemical technology ,TP1-1185 - Abstract
The aim of fusing hyperspectral and multispectral images is to overcome the limitation of remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this end, several hypersharpening methods have been developed, however most of them do not consider the spectral variability phenomenon; therefore, neglecting this phenomenon may cause errors, which leads to reducing the spatial and spectral quality of the sharpened products. Recently, new approaches have been proposed to tackle this problem, particularly those based on spectral unmixing and using parametric models. Nevertheless, the reported methods need a large number of parameters to address spectral variability, which inevitably yields a higher computation time compared to the standard hypersharpening methods. In this paper, a new hypersharpening method addressing spectral variability by considering the spectra bundles-based method, namely the Automated Extraction of Endmember Bundles (AEEB), and the sparsity-based method called Sparse Unmixing by Variable Splitting and Augmented Lagrangian (SUnSAL), is introduced. This new method called Hyperspectral Super-resolution with Spectra Bundles dealing with Spectral Variability (HSB-SV) was tested on both synthetic and real data. Experimental results showed that HSB-SV provides sharpened products with higher spectral and spatial reconstruction fidelities with a very low computational complexity compared to other methods dealing with spectral variability, which are the main contributions of the designed method.
- Published
- 2023
- Full Text
- View/download PDF
5. Improving Hypersharpening for WorldView-3 Data.
- Author
-
Selva, Massimo, Santurri, Leonardo, and Baronti, Stefano
- Abstract
In this letter, hypersharpening is analyzed in depth by investigating some weaknesses present in its formulation. It is shown that the key formula of the synthesized band variant can be simplified under certain circumstances. In addition, a novel fusion schema is proposed. As a result, the gain factor adopted to weight the injected detail is computed in a different way. This schema can be applied to fuse a wide range of hyperspectral and multispectral data. In this letter, its effectiveness is demonstrated by taking into account the characteristics of WorldView-3 data. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. On the Use of the Expanded Image in Quality Assessment of Pansharpened Images.
- Author
-
Selva, Massimo, Santurri, Leonardo, and Baronti, Stefano
- Abstract
This letter discusses whether the expanded multispectral image, i.e., the original multispectral image upsampled to the panchromatic scale, can be used during the assessment of the quality of pansharpened multispectral images. By considering Wald’s protocol, the authors demonstrate that the adoption of the expanded image as the reference is erroneous and brings a quality assessment of the fused images that is misleading. In addition, some recommendations about the valid role of the expanded image are provided. The discussion is supported by a quantitative analysis and visual comparisons. [ABSTRACT FROM PUBLISHER]
- Published
- 2018
- Full Text
- View/download PDF
7. Blind Quality Assessment of Fused WorldView-3 Images by Using the Combinations of Pansharpening and Hypersharpening Paradigms.
- Author
-
Kwan, Chiman, Budavari, Bence, Bovik, Alan C., and Marchisio, Giovanni
- Abstract
WorldView 3 (WV-3) is the first commercially deployed super-spectral, very high-resolution (HR) satellite. However, the resolution of the short-wave infrared (SWIR) bands is much lower than that of the other bands. In this letter, we describe four different approaches, which are combinations of pansharpening and hypersharpening methods, to generate HR SWIR images. Since there are no ground truth HR SWIR images, we also propose a new picture quality predictor to assess hypersharpening performance, without the need for reference images. We describe extensive experiments using actual WV-3 images that demonstrate that some approaches can yield better performance than others, as measured by the proposed blind image quality assessment model of hypersharpened SWIR images. [ABSTRACT FROM PUBLISHER]
- Published
- 2017
- Full Text
- View/download PDF
8. Hypersharpening by Joint-Criterion Nonnegative Matrix Factorization.
- Author
-
Karoui, Moussa Sofiane, Deville, Yannick, Benhalouche, Fatima Zohra, and Boukerch, Issam
- Subjects
- *
HYPERSPECTRAL imaging systems , *NONNEGATIVE matrices , *FACTORIZATION , *DATA fusion (Statistics) , *REMOTE sensing - Abstract
Hypersharpening aims at combining an observable low-spatial resolution hyperspectral image with a high-spatial resolution remote sensing image, in particular a multispectral one, to generate an unobservable image with the high spectral resolution of the former and the high spatial resolution of the latter. In this paper, two such new fusion methods are proposed. These methods, related to linear spectral unmixing techniques, and based on nonnegative matrix factorization (NMF), optimize a new joint criterion and extend the recently proposed joint NMF (JNMF) method. The first approach, called gradient-based joint-criterion NMF (Grd-JCNMF), is a gradient-based method. The second one, called multiplicative JCNMF (Mult-JCNMF), uses new designed multiplicative update rules. These two JCNMF approaches are applied to synthetic and semireal data, and their effectiveness, in spatial and spectral domains, is evaluated with commonly used performance criteria. Experimental results show that the proposed JCNMF methods yield sharpened hyperspectral data with good spectral and spatial fidelities. The obtained results are compared with the performance of two NMF-based methods and one approach based on a sparse representation. These results show that the proposed methods significantly outperform the well-known coupled NMF sharpening method for most performance figures. Also, the proposed Mult-JCNMF method provides the results that are similar to those obtained by JNMF, with a lower computational cost. Compared with the tested sparse-representation-based approach, the proposed methods give better results. Moreover, the proposed Grd-JCNMF method considerably surpasses all other tested methods. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
9. Improving Hypersharpening for WorldView-3 Data
- Author
-
Stefano Baronti, Leonardo Santurri, and Massimo Selva
- Subjects
Computer science ,0211 other engineering and technologies ,Hyperspectral imaging ,pansharpening ,02 engineering and technology ,Geotechnical Engineering and Engineering Geology ,image fusion ,remote sensing ,Hypersharpening ,WorldView-3 ,Electrical and Electronic Engineering ,Algorithm ,Image resolution ,021101 geological & geomatics engineering - Abstract
In this letter, hypersharpening is analyzed in depth by investigating some weaknesses present in its formulation. It is shown that the key formula of the synthesized band variant can be simplified under certain circumstances. In addition, a novel fusion schema is proposed. As a result, the gain factor adopted to weight the injected detail is computed in a different way. This schema can be applied to fuse a wide range of hyperspectral and multispectral data. In this letter, its effectiveness is demonstrated by taking into account the characteristics of WorldView-3 data.
- Published
- 2019
10. Hyper-Sharpening: A First Approach on SIM-GA Data.
- Author
-
Selva, Massimo, Aiazzi, Bruno, Butera, Francesco, Chiarantini, Leandro, and Baronti, Stefano
- Abstract
This paper aims at defining a new paradigm (hypersharpening) in remote sensing image fusion. In fact, due to the development of new instruments, thinking only in terms of pansharpening is reductive. Even though some expressions as hyperspectral (HS) pansharpening already exist, there is not a suitable definition when multispectral/hyperspectral data are used as source to extract spatial details. After defining the hypersharpening framework, we draw the readers’ attention to its peculiar characteristics, by proposing and evaluating two hypersharpening methods. Experiments are carried out on the data produced by the updated version of SIM-GA imager, designed by Selex ES, which is composed by a panchromatic camera and two spectrometers in the VNIR and SWIR spectral ranges, respectively. Owing to the different resolution factors among panchromatic, VNIR and SWIR data sets, we can apply hypersharpening to fuse SWIR data to VNIR resolution. Comparisons of hypersharpening with “traditional” pansharpening show hypersharpening is more effective. [ABSTRACT FROM PUBLISHER]
- Published
- 2015
- Full Text
- View/download PDF
11. On the Use of the Expanded Image in Quality Assessment of Pansharpened Images
- Author
-
Stefano Baronti, Leonardo Santurri, and Massimo Selva
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,media_common.quotation_subject ,Multispectral image ,0211 other engineering and technologies ,pansharpening ,02 engineering and technology ,image fusion ,01 natural sciences ,Image (mathematics) ,image quality ,Computer vision ,Quality (business) ,Electrical and Electronic Engineering ,Image resolution ,hypersharpening ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,media_common ,Protocol (science) ,Wald's protocol ,business.industry ,Geotechnical Engineering and Engineering Geology ,Panchromatic film ,Visualization ,Expanded multispectral image ,Artificial intelligence ,Scale (map) ,business - Abstract
This letter discusses whether the expanded multispectral image, i.e., the original multispectral image upsampled to the panchromatic scale, can be used during the assessment of the quality of pansharpened multispectral images. By considering Wald's protocol, the authors demonstrate that the adoption of the expanded image as the reference is erroneous and brings a quality assessment of the fused images that is misleading. In addition, some recommendations about the valid role of the expanded image are provided. The discussion is supported by a quantitative analysis and visual comparisons.
- Published
- 2018
12. Study of Pansharpening Methods Applied to Hyperspectral Images of SedimentCores
- Author
-
Jacq, Kevin, Coquin, Didier, Fanget, Bernard, Perrette, Yves, Debret, Maxime, Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Processus et bilan des domaines sédimentaires (PBDS), Université de Lille, Sciences et Technologies-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Jacq, Kévin
- Subjects
data fusion ,[CHIM.ANAL] Chemical Sciences/Analytical chemistry ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,hyperspectral imaging ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO]Computer Science [cs] ,[INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT] ,[INFO] Computer Science [cs] ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,hypersharpening - Abstract
International audience; Spectroscopic and imaging sensors are very useful methods in analytical chemistry because they are fast, cost effective, very informative analysis. Recent works search to fused them to create a new sensor with different spectral range to increase spectral and thus chemical information to create robust and precise prediction models. Remote sensing already used fusion methods to increase spatial resolution for spectral sensors. In this paper, we propose to use pixel level data fusion methods on laboratory sensors to check their availability to increase spatial information with low effect on both dimensions (spectral and spatial). The methodology presents two steps, first the registration to fit spatially the sensors and then the fusion step to estimate each sensor at the optimal resolution. The proposed method was used on three sediment cores, that are living sample which can move, crack. They are imaged sequentially with two sensors that do not overlap spectrally: visible near infrared VNIR (400-1000 nm, pixel size: 60 μm), short wave infrared SWIR (1000-2500 nm, pixel size: 190 μm). The registration step allows to have a correlation above 0.9 with still spatial defect bring by the samples that cannot be removed. The twenty-one state of the art pixel level data fusion methods seems to be less relevant than a bicubic interpolation for the case of the laboratory hyperspectral images of sediment cores.
- Published
- 2019
13. Hyper-Sharpening: A First Approach on SIM-GA Data
- Author
-
Stefano Baronti, Leandro Chiarantini, Massimo Selva, Francesco Butera, and Bruno Aiazzi
- Subjects
Atmospheric Science ,Spectrometer ,Computer science ,hyperspectral (HS) ,Multispectral image ,Hyperspectral imaging ,pansharpening ,Sharpening ,Dimensionality reduction ,image fusion ,VNIR ,Panchromatic film ,remote sensing ,Noise (video) ,Computers in Earth Sciences ,Image resolution ,hypersharpening ,Remote sensing - Abstract
This paper aims at defining a new paradigm (hypersharpening) in remote sensing image fusion. In fact, due to the development of new instruments, thinking only in terms of pansharpening is reductive. Even though some expressions as hyperspectral (HS) pansharpening already exist, there is not a suitable definition when multispectral/hyperspectral data are used as source to extract spatial details. After defining the hypersharpening framework, we draw the readers' attention to its peculiar characteristics, by proposing and evaluating two hypersharpening methods. Experiments are carried out on the data produced by the updated version of SIM-GA imager, designed by Selex ES, which is composed by a panchromatic camera and two spectrometers in the VNIR and SWIR spectral ranges, respectively. Owing to the different resolution factors among panchromatic, VNIR and SWIR data sets, we can apply hypersharpening to fuse SWIR data to VNIR resolution. Comparisons of hypersharpening with 'traditional' pansharpening show hypersharpening is more effective.
- Published
- 2015
14. PRISMA Products and Applications (Marzo 2015)
- Author
-
Bruno Aiazzi, Luciano Alparone, AlessandroBarducc, i Stefano Baronti, Roberto Carlà, Andrea Garzell, i Donatella Guzzi, Cinzia Lastri, Paolo Marcoionni, Vanni Nardino, Ivan Pippi, Leonardo Santurri, and Massimo Selva
- Subjects
Simulatore immagini iperspettrali ,fusione dati ,Correzioni radiometriche ,incendi ,correzioni atmosferiche ,qualità dell'immagine ,hypersharpening - Abstract
Il progetto OPTIMA si è proposto di accrescere e consolidare le potenzialità applicative della missione PRISMA attraverso l'implementazione di metodologie avanzate per l'analisi, l'integrazione e l'ottimizzazione dei prodotti di livello 1 e 2. Questa attività ha dato luogo anche allo sviluppo di vari algoritmi di elaborazione e pre-elaborazione dei dati che verranno acquisiti dallo spettrometro ad immagine e dalla camera pancromatica di PRISMA. Da un punto di vista metodologico, il progetto si è posto l'obiettivo di sfruttare la particolare integrazione ottica dei sensori PRISMA, dove la camera pancromatica ed il sensore iperspettrale condividono lo stesso sistema ottico d'ingresso. Questa circostanza ha ricadute importanti per le attività e gli algoritmi di image enhancement, image restoration e soprattutto data fusion, e dando luogo a miglioramenti importanti nei prodotti del telerilevamento di livello 2 e superiori. Inizialmente le atività del progetto si sono concentrate sulla definizione dello stato dell'arte della sensoristica, delle metodologie e degli algoritmi già esistenti. Il risulato di tale attività è riportato nel documento "PRISMA Products and Applications: stato dell'arte". Il progetto si è quindi concentrato sull'analisi delle caratteristiche della camera pancromatica e del sensore iperspettrale previsti per la missione PRISMA. A tal fine sono state considerate anche le caratteristiche del calibratore di bordo valutandone le modalità operative, nonché la catena di acquisizione e trasferimento dati fra i sottositemi a bordo. Particolare attenzione è stata posta al flusso di dati generati dal payload di PRISMA, valutandone anche la possibile riduzione. Per quanto riguarda il segmento di terra della missione particolare attenzione è stata rivolta all'organizzazione dell'Image Data Handling Segment. In particolare lo studio del Processore e degli algoritmi implementati dal team industriale ha costituito la base per lo sviluppo e l'implementazione dei nostri algoritmi avanzati di pre-elaborazione ed elaborazione dei dati. Non avendo a disposizione fin dall'inizio del progetto dati PRISMA, è stato sviluppato un simulatore di dati/immagini al fine di testare le procedure di elaborazione dati. Il simulatore è stato progettato e realizzato tenendo conto, ove possibile, degli effettivi parametri operativi e strumentali resi disponibili dal team industriale. È stata prodotta una prima immagine simulata di radianza al sensore sull'area di Firenze tenendo conto delle caratteristiche della scena osservata, delle modalità operative, della geometria di acquisizione, dei parametri atmosferici e dei parametri strumentali. Sono stati simulati anche gli effetti del rumore aleatorio e del rumore spazialmente coerente. A causa del ritardato lancio del satellite della missione PRISMA, le attività del progetto hanno continuato ad utilizzare dati simulati al posto di dati realmente acquisiti. Sono stati sviluppati ed implementati gli algoritmi per valutare la qualità dei dati acquisiti dei payload ottici della missione PRISMA (camera pancromatica e sensore iperspettrale). Per testare gli algoritmi sono state utilizzate serie di acquisizioni su Firenze e su altre regioni italiane effettuate dal sensore iperspettrale HYPERION. Sono stati sviluppati gli algortimi di ottimizzazione dei prodotti di livello 1 e 2 della missione PRISMA implementando appropriate correzioni radiometriche ed atmosferiche basate su procedure autonome ed iterative. Gli algoritmi sono stati testati su immagini HYPERION acquisite su varie regioni italiane e sull'immagine simulata su Firenze. Sono state implementate le procedure di fusione dati per l'integrazione delle immagini acquisite dal sensore iperspettrale con quelli della camera pancromatica di PRISMA. Per testare gli algoritmi sono state utilizzate una serie di acquisizioni di HYPERION, di ALI e del sensore iperspettrale avionico SIM-GA di Selex-ES. Sono state valutate le potenzialità applicative della missione PRISMA per l'indagine ed il monitoraggio di particolari processi e fenomeni fisici di rilievo per la descrizione dell'ambiente, per il monitoraggio delle risorse e di alcuni rischi naturali e/o antropici (e.g. incendi e umidità del suolo utile per lo studio di frane). Per valutare le potenzialità della missione PRISMA sono state utilizzate una serie di acquisizioni di HYPERION su varie regioni italiane. Contemporaneamente a questa serie di attività è stata fornito ad ASI un supporto tecnico scientifico nelle riunioni col team industriale. Anche per questo è stata approfondita l'analisi dettagliata delle caratteristiche dei sensori della missione PRISMA, studiandone sia le prestazioni che le capacità diagnostiche ed applicative. Su richiesta di ASI e del team industriale, è stata prima studiata la riduzione del data-rate verso la PDHT, attraverso la compressione, la decimazione delle bande spettrali e/o la riduzione del campo di vista; quindi è stata esaminata la calibrazione della camera iperspettrale, sia a terra prima del lancio, che in volo. Per quanto riguarda la parte di correzione radiometrica ed atmosferica è stata svolta un attività di supporto ad ASI durante la quale sono stati analizzati gli algortimi usati dal team industriale per la generazione dei prodotti di livello 1 e 2. Durante il progetto è stata svolta una campagna di telerilevamento sul Parco Regionale di San Rossore- Migliarino- Massaciuccoli comprendente la caratterizzazione di suoli e dell'atmosfera attraverso una serie di misure a terra eseguite con spettrometri e spettro-irradiometri in contemporanea all'acquisizione di una scena HYPERION e ALI ed ai sorvoli effettuati da TELAER STA utilizzando lo scanner multispettrale Daedalus AA1278 montato sull'aereo turboelica AP68TP-600 Viator. Nel presente volume vengono descritti in dettaglio le metodololgie, gli algoritmi ed i prodotti sviluppati durante il progetto.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.