1. Myostatin deficiency decreases cardiac extracellular matrix in pigs
- Author
-
Hyo-Jin Paek, Biao-Hu Quan, Hak-Myong Choe, Zhou-Yan Li, and Xi-Jun Yin
- Subjects
Male ,Swine ,Myostatin ,Collagen Type I ,Extracellular Matrix ,Hydroxyproline ,Transforming Growth Factor beta ,Genetics ,Animals ,Female ,Animal Science and Zoology ,Muscle, Skeletal ,Proto-Oncogene Proteins c-akt ,Agronomy and Crop Science ,Biotechnology - Abstract
Myostatin (MSTN), a member of the TGF-β superfamily, negatively regulates muscle growth. MSTN inhibition has been known to cause a double-muscled phenotype in skeletal muscle and fibrosis reduction in the heart. However, the role of MSTN in the cardiac extracellular matrix (ECM) needs more studies in various species of animal models to draw more objective conclusions. The main objective of the present study was to investigate whether loss of MSTN affects the cardiac extracellular matrix in pigs. Three MSTN knockouts (MSTN-/-) and three wild type (WT) male pigs were generated by crossing MSTN ± heterozygous gilts and boars. Cardiac ECM and underlying mechanisms were determined post-mortem. The role of MSTN on collagen expression was investigated by treating cardiac fibroblasts with active MSTN protein in vitro. MSTN protein was detected in WT hearts, while no expression was detected in MSTN-/- hearts. The heart-to-body weight ratio was significantly decreased in MSTN-/- pigs. The morphometric analyses, including picrosirius red staining, immunofluorescent staining, and ultra-structural thickness examination of the endomysium, revealed a significant reduction of connective tissue content in MSTN-/- hearts compared to WT. Hydroxyproline, type I collagen (Col1A), and p-Smad3/Smad3 levels were significantly lower in MSTN-/- hearts in vivo. On the contrary, cardiac fibroblasts treated with exogenous MSTN protein overexpressed Col1A and activated Smad and AKT signaling pathways in vitro. The present study suggests that inhibition of MSTN decreases cardiac extracellular matrix.
- Published
- 2022
- Full Text
- View/download PDF