1. Conformational rigidity of cytochrome c'-α from a thermophile is associated with slow NO binding.
- Author
-
Fujii S, Wilson MT, Adams HR, Mikolajek H, Svistunenko DA, Smyth P, Andrew CR, Sambongi Y, and Hough MA
- Subjects
- Protein Conformation, Hydrogenophilaceae enzymology, Hydrogenophilaceae metabolism, Hydrogenophilaceae chemistry, Temperature, Models, Molecular, Kinetics, Nitric Oxide metabolism, Nitric Oxide chemistry, Cytochromes c' chemistry, Cytochromes c' metabolism, Protein Binding
- Abstract
Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding. Electron paramagnetic and resonance Raman spectroscopies reveal the formation of a PhCP-α 5cNO product, with time-resolved (stopped-flow) UV-vis absorbance indicating the involvement of a 6cNO intermediate. Relative to AxCP-α, the rates of 6cNO and 5cNO formation in PhCP-α are ∼11- and ∼13-fold lower, respectively. Notably, x-ray crystal structures of PhCP-α in the presence and absence of NO suggest that the sluggish formation of the proximal 5cNO product results from conformational rigidity: the Arg-132 residue (adjacent to the proximal His ligand) is held in place by a salt bridge between Arg-75 and Glu-135 (an interaction not present in AxCP-α or a psychrophilic counterpart). Overall, our data provide fresh insights into structural factors controlling NO binding in heme proteins, including 5cNO complexes relevant to eukaryotic NO sensors., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF