1. Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
- Author
-
Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, and Jiafu Wang
- Subjects
basis vector control ,reprogrammable metasurface ,dynamically-controlled holograms ,arbitrary polarization state ,broadband ,Optics. Light ,QC350-467 - Abstract
Reprogrammable metasurfaces, which establish a fascinating bridge between physical and information domains, can dynamically control electromagnetic (EM) waves in real time and thus have attracted great attentions from researchers around the world. To control EM waves with an arbitrary polarization state, it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states. In this work, we present the concept of complete-basis-reprogrammable coding metasurface (CBR-CM) in reflective manners, which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized (LCP) waves and right-handed circularly polarized (RCP) waves. Since LCP and RCP waves together constitute a complete basis set of planar EM waves, dynamically-controlled holograms can be generated under arbitrarily polarized wave incidence. The dynamically reconfigurable meta-particle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently. It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels, which may provide technical assistance for digital EM environment reproduction.
- Published
- 2024
- Full Text
- View/download PDF