1. Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant
- Author
-
Vlaic, Sergio, Rougemaille, Nicolas, Artaud, Alexandre, Renard, Vincent T, Huder, Loïc, Rouviere, Jean-Luc, Kimouche, Amina, Santos, Benitos, Locatelli, Andrea, Guisset, Valérie, David, Philippe, Chapelier, Claude, Magaud, Laurence, Canals, Benjamin, and Coraux, Johann
- Subjects
Condensed Matter - Materials Science - Abstract
In crystal growth, surfactants are additive molecules used in dilute amount or as dense, permeable layers to control surface morphologies. Here, we investigate the properties of a strikingly different surfactant: a two-dimensional and covalent layer with close atomic packing, graphene. Using in situ, real time electron microscopy, scanning tunneling microscopy, kinetic Monte Carlo simulations, and continuum mechanics calculations, we reveal why metallic atomic layers can grow in a two-dimensional manner below an impermeable graphene membrane. Upon metal growth, graphene dynamically opens nanochannels called wrinkles, facilitating mass transport, while at the same time storing and releasing elastic energy via lattice distortions. Graphene thus behaves as a mechanically active, deformable surfactant. The wrinkle-driven mass transport of the metallic layer intercalated between graphene and the substrate is observed for two graphene-based systems, characterized by different physico-chemical interactions, between graphene and the substrate, and between the intercalated material and graphene. The deformable surfactant character of graphene that we unveil should then apply to a broad variety of species, opening new avenues for using graphene as a two-dimensional surfactant forcing the growth of flat films, nanostructures and unconventional crystalline phases.
- Published
- 2018
- Full Text
- View/download PDF