1. SVASTIN: Sparse Video Adversarial Attack via Spatio-Temporal Invertible Neural Networks
- Author
-
Pan, Yi, Huang, Jun-Jie, Chen, Zihan, Zhao, Wentao, and Wang, Ziyue
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Robust and imperceptible adversarial video attack is challenging due to the spatial and temporal characteristics of videos. The existing video adversarial attack methods mainly take a gradient-based approach and generate adversarial videos with noticeable perturbations. In this paper, we propose a novel Sparse Adversarial Video Attack via Spatio-Temporal Invertible Neural Networks (SVASTIN) to generate adversarial videos through spatio-temporal feature space information exchanging. It consists of a Guided Target Video Learning (GTVL) module to balance the perturbation budget and optimization speed and a Spatio-Temporal Invertible Neural Network (STIN) module to perform spatio-temporal feature space information exchanging between a source video and the target feature tensor learned by GTVL module. Extensive experiments on UCF-101 and Kinetics-400 demonstrate that our proposed SVASTIN can generate adversarial examples with higher imperceptibility than the state-of-the-art methods with the higher fooling rate. Code is available at \href{https://github.com/Brittany-Chen/SVASTIN}{https://github.com/Brittany-Chen/SVASTIN}.
- Published
- 2024