274 results on '"Hu, X. J."'
Search Results
2. Flux Variations of Cosmic Ray Air Showers Detected by LHAASO-KM2A During a Thunderstorm on 10 June 2021
- Author
-
LHAASO Collaboration, Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Zhe, Cao, Zhen, Chang, J., Chang, J. F., Chen, E. S., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. J., Chen, Y., Cheng, H. L., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Duan, K. K., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Gu, F. L., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, W. H., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Li, B. B., Li, Cheng, Li, Cong, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Long, W. J., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Min, Z., Mitthumsiri, W., Nan, Y. C., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. Y., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R., Wang, R. N., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z. H. Wang. Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., W, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yan, J. Z., Yang, C. W., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, Lu, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Y. L., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
The Large High Altitude Air Shower Observatory (LHAASO) has three sub-arrays, KM2A, WCDA and WFCTA. The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during the thunderstorm on 10 June 2021. The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields, with maximum fractional increase of 20%. The variations of trigger rates (increases or decreases) are found to be strongly dependent on the primary zenith angle. The flux of secondary particles increases significantly, following a similar trend with that of the shower events. To better understand the observed behavior, Monte Carlo simulations are performed with CORSIKA and G4KM2A (a code based on GEANT4). We find that the experimental data (in saturated negative fields) are in good agreement with simulations, assuming the presence of a uniform upward electric field of 700 V/cm with a thickness of 1500 m in the atmosphere above the observation level. Due to the acceleration/deceleration and deflection by the atmospheric electric field, the number of secondary particles with energy above the detector threshold is modified, resulting in the changes in shower detection rate., Comment: 18 pages, 11 figures
- Published
- 2022
- Full Text
- View/download PDF
3. Peta-electron volt gamma-ray emission from the Crab Nebula
- Author
-
The LHAASO Collaboration, Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Zhe, Chang, J., Chang, J. F., Chen, B. M., Chen, E. S., Chen, J., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Piazzoli, B. D'Ettorre, Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. J., Duan, K. K., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, X. Y., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Ke, T., Kuleshov, D., Levochkin, K., Li, B. B., Li, Cheng, Li, Cong, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, Jie, Li, Jian, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y., Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Min, Z., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. Y., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, Wei, Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yan, J. Z., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L. X., Zhang, Li, Zhang, Lu, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Y. L., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Crab pulsar and the surrounding nebula powered by the pulsar's rotational energy through the formation and termination of a relativistic electron-positron wind is a bright source of gamma-rays carrying crucial information about this complex conglomerate. We report the detection of $\gamma$-rays with a spectrum showing gradual steepening over three energy decades, from $5\times 10^{-4}$ to $1.1$ petaelectronvolt (PeV). The ultra-high-energy photons exhibit the presence of a PeV electron accelerator (a pevatron) with an acceleration rate exceeding 15% of the absolute theoretical limit. Assuming that unpulsed $\gamma$-rays are produced at the termination of the pulsar's wind, we constrain the pevatron's size, between $0.025$ and $0.1$ pc, and the magnetic field $\approx 110 \mu$G. The production rate of PeV electrons, $2.5 \times 10^{36}$ erg $\rm s^{-1}$, constitutes 0.5% of the pulsar's spin-down luminosity, although we do not exclude a non-negligible contribution of PeV protons to the production of the highest energy $\gamma$-rays., Comment: 43 pages, 13 figures, 2 tables; Published in Science
- Published
- 2021
- Full Text
- View/download PDF
4. Calibration of the Air Shower Energy Scale of the Water and Air Cherenkov Techniques in the LHAASO experiment
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z. Cao Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Piazzoli, B. DEttorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Saiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Wide Field-of-View Cherenkov Telescope Array (WFCTA) and the Water Cherenkov Detector Arrays (WCDA) of LHAASO are designed to work in combination for measuring the energy spectra of various cosmic ray species over a very wide energy range from a few TeV to 10 PeV. The energy calibration of WCDA can be achieved with a proven technique of measuring the westward shift of the Moon shadow of galactic cosmic rays due to the geomagnetic field. This deflection angle $\Delta$ is inversely proportional to the energy of the cosmic rays. The precise measurements of the shifts by WCDA allows us to calibrate its energy scale for energies as high as 35 TeV. The energy scale measured by WCDA can be used to cross calibrate the energy reconstructed by WFCTA, which spans the whole energy range up to 10 PeV. In this work, we will demonstrate the feasibility of the method using the data collected from April 2019 to January 2020 by the WFCTA array and WCDA-1 detector, the first of the three water Cherenkov ponds, already commissioned at LHAASO site.
- Published
- 2021
- Full Text
- View/download PDF
5. Construction and On-site Performance of the LHAASO WFCTA Camera
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Piazzoli, B. D'Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment - Abstract
The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here., Comment: 45 pages, 21 figures, article
- Published
- 2020
- Full Text
- View/download PDF
6. The observation of the Crab Nebula with LHAASO-KM2A for the performance study
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Piazzoli, B. D'Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
As a sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to cover a large fraction of the northern sky to hunt for gamma-ray sources at energies above 10 TeV. Even though the detector construction is still underway, a half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the pipeline of KM2A data analysis and the first observation on the Crab Nebula, a standard candle in very high energy gamma-ray astronomy. We detect gamma-ray signals from the Crab Nebula in both energy ranges of 10$-$100 TeV and $>$100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance including angular resolution, pointing accuracy and cosmic ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE =(1.13$\pm$0.05$_{stat}$$\pm$0.08$_{sys}$)$\times$10$^{-14}$$\cdot$(E/20TeV)$^{-3.09\pm0.06_{stat}\pm0.02_{sys}}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$. It is consistent with previous measurements by other experiments. This opens a new window of gamma-ray astronomy above 0.1 PeV through which ultrahigh-energy gamma-ray new phenomena, such as cosmic PeVatrons, might be discovered., Comment: 13 pages, 15 figures,submitted to CPC
- Published
- 2020
- Full Text
- View/download PDF
7. Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Zhe, Cao, Zhen, Chang, J., Chang, J. F., Chen, E. S., Chen, Liang, Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, H. L., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., D’Ettorre Piazzoli, B., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Duan, K. K., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, W. H., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Levochkin, K., Li, B. B., Li, Cheng, Li, Cong, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Long, W. J., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Min, Z., Mitthumsiri, W., Nan, Y. C., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. Y., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R., Wang, R. N., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yan, J. Z., Yang, C. W., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, Lu, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Y. L., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Published
- 2022
- Full Text
- View/download PDF
8. Effect of water vapor on the reduction kinetics of hematite powder by hydrogen-water vapor in different stages
- Author
-
Mao X.-D., Hu X.-J., Fan Y.-W., and Chou K-.C.
- Subjects
reduction ,water ,hydrogen ,kinetics mechanism ,Mining engineering. Metallurgy ,TN1-997 - Abstract
The powder of the hematite sample was isothermally reduced with a hydrogen-water vapor gas mixture at 1023K-1273K. The results indicate that the overall reduction process of hematite can be divided into three stages (Fe2O3-Fe3O4-FeO-Fe) each of which should be investigated. At 1023K, the average reaction rate decreased by 53.6% in stage 1 when the water vapor content of the reaction gas increased from 0% to 50%, and it decreased by about 77.2% in stage 2. However, in stage 3, when the water vapor content increased only from 0% to 20%, it decreased by about 78.1%. The results also show that the influence of water vapor on the reduction reaction increases with increasing reaction temperature in all stages of the reduction reaction. The microstructure of the reduction products showed that they still had some holes; that did not seriously block the channel for hydrogen diffusion. Various models were considered to further clarify the influence of water vapor in the reduction stage The range of apparent activation energy of the different stages obtained by the model fitting was about 20-70 kJ/mol, which also confirmed the absence of the solid-state diffusion phenomenon.
- Published
- 2023
- Full Text
- View/download PDF
9. A method to measure the transition energy $\gamma_{t}$ of the isochronously tuned storage ring
- Author
-
Chen, R. J., Yan, X. L., Ge, W. W., Yuan, Y. J., Wang, M., Sun, M. Z., Xing, Y. M., Zhang, P., Fu, C. Y., Shuai, P., Xu, X., Zhang, Y. H., Bao, T., Chen, X. C., Hu, X. J., Huang, W. J., Li, H. F., Liu, J. H., Litvinov, Yu. A., Litvinov, S. A., Mao, L. J., Wu, B., Xu, H. S., Yang, J. C., Yin, D. Y., Zeng, Q., Zhang, X. H., Zheng, W. H., Zhou, X. H., and Zhou, X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Isochronous Mass Spectrometry (IMS) is a powerful technique developed in heavy-ion storage rings for measuring masses of very short-lived exotic nuclei. The IMS is based on the isochronous setting of the ring. One of the main parameters of this setting is the transition energy $\gamma_{t}$. %The transition energy $\gamma_{t}$ plays an important role in the isochronous mass spectrometry (IMS). It has been a challenge to determine the $\gamma_{t}$ and especially to monitor the variation of $\gamma_{t}$ during experiments. In this paper we introduce a method to measure the $\gamma_{t}$ online during IMS experiments by using the acquired experimental data. Furthermore, since the storage ring has (in our context) a relatively large momentum acceptance, the variation of the $\gamma_{t}$ across the ring acceptance is a source of systematic uncertainty of measured masses. With the installation of two time-of-flight (TOF) detectors, the velocity of each stored ion and its revolution time are simultaneously available for the analysis. These quantities enabled us to determine the $\gamma_{t}$ as a function of orbital length in the ring. The presented method is especially important for future IMS experiments planned at the new-generation storage ring facilities FAIR in Germany and HIAF in China., Comment: 7 pages
- Published
- 2018
- Full Text
- View/download PDF
10. Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, L., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Volpe, D. della, Piazzoli, B. D’Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Published
- 2021
- Full Text
- View/download PDF
11. A dynamic range extension system for LHAASO WCDA-1
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, L., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Volpe, D. della, Piazzoli, B. D’Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Y., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Published
- 2021
- Full Text
- View/download PDF
12. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources
- Author
-
Cao, Zhen, Aharonian, F. A., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Zhe, Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., D′Ettorre Piazzoli, B., Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, Cong, Li, Cheng, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, Xin, Li, X. R., Li, Y., Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Zheng, Wang, Zhen, Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, Li, Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Yong, Zhang, Yi, Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Published
- 2021
- Full Text
- View/download PDF
13. Facets Formation of Ag3Sn Intermetallic in Sn-Bi-Ag Alloys: An EBSD and First-Principles Study.
- Author
-
Liao, J. L., Hu, X. J., Wang, Y. R., Sun, W., Mi, G. Y., Xian, J. W., and Zeng, G.
- Subjects
SOLDER joints ,SOLDER & soldering ,COPPER-tin alloys ,INTERMETALLIC compounds ,ALLOYS ,CRYSTAL surfaces - Abstract
Ag
3 Sn intermetallic growth within Sn-Bi-Ag alloys during relatively slow cooling rates has a pronounced effect on the performance and reliability of solder joints. In this study, we combined experimental electron backscatter diffraction (EBSD) analysis with first-principles calculations to explore the crystal growth and faceting mechanisms of Ag3 Sn intermetallic in solidifying Sn-xBi-1Ag (x = 10, 57 wt.%) alloys. Using EBSD techniques, accommodated for a pseudo-hexagonal setting of Ag3 Sn to avoid pseudo-symmetry, and subsequent lattice transformation to an orthorhombic structure (a = 5.97 Å, b = 4.78 Å, c = 5.18 Å, Pmmn), this study reveals predominant (001)orth facets in Sn-10Bi-1Ag, and both (001)orth and more frequent (010)orth facets in Sn-57Bi-1Ag. Stability assessments of various crystal surfaces through first-principles calculations found the (010)orth surface to be most stable, followed by the (001)orth . Variations in stable facets between the two alloys may result from energy minimization influenced by atomic attachment at the liquid/solid interface, dynamic non-equilibrium solidification conditions, Bi concentration, and growth twinning. These findings enhance the understanding of intermetallic compound growth in solder alloys, with implications for solder joint technology improvement. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
14. Construction and on-site performance of the LHAASO WFCTA camera
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, L., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Volpe, D. della, Piazzoli, B. D’Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Published
- 2021
- Full Text
- View/download PDF
15. Microstructure and electrochemical properties of nanocrystalline diamond and graphene hybridized films.
- Author
-
Jiang, M. Y., Ma, W. C., Han, S. J., Chen, C. K., Fan, D., Li, X., and Hu, X. J.
- Subjects
DIAMOND-like carbon ,MICROSTRUCTURE ,CRYSTAL grain boundaries ,CHEMICAL vapor deposition ,DIAMONDS ,ELECTROCHEMICAL electrodes - Abstract
We have successfully grown a series of nanocrystalline diamond and graphene hybridized (NCD-G) films with various morphologies and compositions of grain boundaries by adjusting the growth pressure by hot-filament chemical vapor deposition and extensively investigated their electrochemical performances. In the case of low growth pressure, such as 1.0 and 1.3 kPa, there is a large amount of graphene in the NCD-G films, and graphene exhibits better crystallinity and a bigger size. These produce quicker electron exchange, rising background current, and reduced potential window. As the growth pressure increases to above 1.6 kPa, the grain boundaries are reduced, so that the NCD-G films possess fewer graphene components. As the growth pressure is 1.6 kPa, the "bridge"-like graphene stands on the neighboring nanocrystalline diamond grains, providing degraded electrochemical properties of smaller redox current. With the growth pressure further increasing to 1.9 kPa, the least trans-polyacetylene wrapped diamond grains produce slightly rising redox current, wider potential windows, and smaller background current. Graphene exists as a small slice and is distributed parallel with the grains with the growth pressure increasing to 2.2 kPa, exhibiting a significant rising redox current accompanied with wider potential windows and lower background current. It is concluded that the high diamond content is beneficial to enlarge the potential windows and decrease the background current, and the graphene components take advantage of improving the redox current. Moreover, the ordered and small graphene surrounding the diamond grains is positive to improve the electrochemical response without the rising background current. Thus, we prepare an electrochemical electrode material with excellent performance by adjusting the state and the content of each component in the NCD-G films. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
16. The effects of gestational diabetes mellitus with maternal age between 35 and 40 years on the metabolite profiles of plasma and urine
- Author
-
He, X-L, Hu, X-J, Luo, B-Y, Xia, Y-Y, Zhang, T, Saffery, R, De Seymour, J, Zou, Z, Xu, G, Zhao, X, Qi, H-B, Han, T-L, Zhang, H, Baker, PN, He, X-L, Hu, X-J, Luo, B-Y, Xia, Y-Y, Zhang, T, Saffery, R, De Seymour, J, Zou, Z, Xu, G, Zhao, X, Qi, H-B, Han, T-L, Zhang, H, and Baker, PN
- Abstract
BACKGROUND: Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance in pregnancy and without a history of diabetes mellitus. While there are limited metabolomic studies involving advanced maternal age in China, we aim to investigate the metabolomic profiling of plasma and urine in pregnancies complicated with GDM aged at 35-40 years at early and late gestation. METHODS: Twenty normal and 20 GDM pregnant participants (≥ 35 years old) were enlisted from the Complex Lipids in Mothers and Babies (CLIMB) study. Maternal plasma and urine collected at the first and third trimester were detected using gas chromatography-mass spectrometry (GC-MS). RESULTS: One hundred sixty-five metabolites and 192 metabolites were found in plasma and urine respectively. Urine metabolomic profiles were incapable to distinguish GDM from controls, in comparison, there were 14 and 39 significantly different plasma metabolites between the two groups in first and third trimester respectively. Especially, by integrating seven metabolites including cysteine, malonic acid, alanine, 11,14-eicosadienoic acid, stearic acid, arachidic acid, and 2-methyloctadecanoic acid using multivariant receiver operating characteristic models, we were capable of discriminating GDM from normal pregnancies with an area under curve of 0.928 at first trimester. CONCLUSION: This study explores metabolomic profiles between GDM and normal pregnancies at the age of 35-40 years longitudinally. Several compounds have the potential to be biomarkers to predict GDM with advanced maternal age. Moreover, the discordant metabolome profiles between the two groups could be useful to understand the etiology of GDM with advanced maternal age.
- Published
- 2022
17. Pharmacokinetics of Cefozopran by Single and Multiple Intravenous Infusions in Healthy Chinese Volunteers
- Author
-
Wu, G. L., Shentu, J. Z., Zhou, H. L., Zhu, M. X., Hu, X. J., Liu, J., and Wu, L. H.
- Published
- 2015
- Full Text
- View/download PDF
18. Joint Inference on HIV Viral Dynamics and Immune Suppression in Presence of Measurement Errors
- Author
-
Wu, L., Liu, W., and Hu, X. J.
- Published
- 2010
19. Time Course of Leukocyte Influx Following Middle Cerebral Artery Occlusion in the Wistar Rat
- Author
-
Garcia, J. H., Liu, K.-F., Hu, X.-J., Yamaguchi, Takenori, editor, Mori, Etsuro, editor, Minematsu, Kazuo, editor, and del Zoppo, Gregory J., editor
- Published
- 1995
- Full Text
- View/download PDF
20. Radiation Damage Effects on Optical, Electrical, and Thermophysical Properties of CVD Diamond Films
- Author
-
Khomich, A. V., Khmelnitskii, R. A., Hu, X. J., Khomich, A. A., Popovich, A. F., Vlasov, I. I., Dravin, V. A., Chen, Y. G., Karkin, A. E., and Ralchenko, V. G.
- Published
- 2013
- Full Text
- View/download PDF
21. The effects of abiotic stresses on the NADP-dependent malic enzyme in the leaves of the hexaploid wheat
- Author
-
Fu, Z. Y., Zhang, Z. B., Liu, Z. H., Hu, X. J., and Xu, P.
- Published
- 2011
- Full Text
- View/download PDF
22. Crystal structure of 5,17-bis(N-tert-butylhydroxyamine)-25,26,27,28- tetrapropoxycalix[4]arene, C48H66N2O6
- Author
-
Hu X.-J., Yang H.-J., Liu J.-K., Zhang H., Li Y., Luo Y.-H., and Wang R.-J.
- Subjects
Physics ,QC1-999 ,Crystallography ,QD901-999 - Abstract
C48H66N2O6, monoclinic, P121/c1 (no. 14), a = 14.636(2) Å, b = 16.807(2) Å, c = 19.131(2) Å, β = 102.981(1)°, V = 4585.8 Å3, Z = 4, Rgt(F) = 0.070, wRref(F2) = 0.160, T = 295 K.
- Published
- 2006
- Full Text
- View/download PDF
23. Crystal structure of 5,17-bis(N-tert-butylhydroxyamine)-11,23-dibromo- 25,26,27,28-tetrapropoxycalix[4]arene, C48H64Br2N2O6
- Author
-
Zhang H., Hu X.-J., Liu J.-K., Li Y., Yang H.-J., and Wang R.-J.
- Subjects
Physics ,QC1-999 ,Crystallography ,QD901-999 - Published
- 2006
- Full Text
- View/download PDF
24. Significance of a β-ketoacyl-CoA synthase gene expression for wheat tolerance to adverse environments
- Author
-
Hu, X. J., Zhang, Z. B., Fu, Z. Y., Xu, P., Hu, S. B., and Li, W. Q.
- Published
- 2010
- Full Text
- View/download PDF
25. Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses
- Author
-
Hu, X. J., Zhang, Z. B., Xu, P., Fu, Z. Y., Hu, S. B., and Song, W. Y.
- Published
- 2010
- Full Text
- View/download PDF
26. Crystal structure of 5,17-dibromo-25,27-dimethoxy-26-benzoyloxy- 28-hydroxycalix[4]arene dihydrate, C37H34Br2O5 · 2H2O
- Author
-
Yu F.-J., Hu X.-J., Li Y., Yang H.-J., and Wang R.-J.
- Subjects
Physics ,QC1-999 ,Crystallography ,QD901-999 - Abstract
C37H34Br2O7, triclinic, P1 (no. 2), a = 9.744(1) Å, b = 10.059(1) Å, c = 18.012(2) Å, α = 91.66(1)°, β = 99.06(1)°, γ = 104.536(9)°, V = 1683.4 Å3, Z = 2, Rgt(F) = 0.071, wRref(F2) = 0.180, T = 293 K.
- Published
- 2005
- Full Text
- View/download PDF
27. Continuous delivery of rotigotine decreases extracellular dopamine suggesting continuous receptor stimulation
- Author
-
Kehr, J., Hu, X.-J., Goiny, M., and Scheller, D. K. A.
- Published
- 2007
- Full Text
- View/download PDF
28. Observation of the Crab Nebula with LHAASO-KM2A − a performance study *
- Author
-
Aharonian, F., primary, An, Q., additional, Axikegu, 克古, additional, Bai, L. X., additional, Bai, Y. X., additional, Bao, Y. W., additional, Bastieri, D., additional, Bi, X. J., additional, Bi, Y. J., additional, Cai, H., additional, Cai, J. T., additional, Cao, Z., additional, Chang, J., additional, Chang, J. F., additional, Chang, X. C., additional, Chen, B. M., additional, Chen, J., additional, Chen, L., additional, Chen, M. J., additional, Chen, M. L., additional, Chen, Q. H., additional, Chen, S. H., additional, Chen, S. Z., additional, Chen, T. L., additional, Chen, X. L., additional, Chen, Y., additional, Cheng, N., additional, Cheng, Y. D., additional, Cui, S. W., additional, Cui, X. H., additional, Cui, Y. D., additional, Dai, B. Z., additional, Dai, H. L., additional, Dai, Z. G., additional, Danzengluobu, 罗布, additional, Volpe, D. della, additional, Piazzoli, B. D'Ettorre, additional, Dong, X. J., additional, Fan, J. H., additional, Fan, Y. Z., additional, Fan, Z. X., additional, Fang, J., additional, Fang, K., additional, Feng, C. F., additional, Feng, L., additional, Feng, S. H., additional, Feng, Y. L., additional, Gao, B., additional, Gao, C. D., additional, Gao, Q., additional, Gao, W., additional, Ge, M. M., additional, Geng, L. S., additional, Gong, G. H., additional, Gou, Q. B., additional, Gu, M. H., additional, Guo, J. G., additional, Guo, X. L., additional, Guo, Y. Q., additional, Guo, Y. Y., additional, Han, Y. A., additional, He, H. H., additional, He, H. N., additional, He, J. C., additional, He, S. L., additional, He, X. B., additional, He, Y., additional, Heller, M., additional, Hor, Y. K., additional, Hou, C., additional, Hou, X., additional, Hu, H. B., additional, Hu, S., additional, Hu, S. C., additional, Hu, X. J., additional, Huang, D. H., additional, Huang, Q. L., additional, Huang, W. H., additional, Huang, X. T., additional, Huang, Z. C., additional, Ji, F., additional, Ji, X. L., additional, Jia, H. Y., additional, Jiang, K., additional, Jiang, Z. J., additional, Jin, C., additional, Kuleshov, D., additional, Levochkin, K., additional, Li, B. B., additional, Li, C., additional, Li, F., additional, Li, H. B., additional, Li, H. C., additional, Li, H. Y., additional, Li, J., additional, Li, K., additional, Li, W. L., additional, Li, X., additional, Li, X. R., additional, Li, Y., additional, Li, Y. Z., additional, Li, Z., additional, Liang, E. W., additional, Liang, Y. F., additional, Lin, S. J., additional, Liu, B., additional, Liu, C., additional, Liu, D., additional, Liu, H., additional, Liu, H. D., additional, Liu, J., additional, Liu, J. L., additional, Liu, J. S., additional, Liu, J. Y., additional, Liu, M. Y., additional, Liu, R. Y., additional, Liu, S. M., additional, Liu, W., additional, Liu, Y. N., additional, Liu, Z. X., additional, Long, W. J., additional, Lu, R., additional, Lv, H. K., additional, Ma, B. Q., additional, Ma, L. L., additional, Ma, X. H., additional, Mao, J. R., additional, Masood, A., additional, Mitthumsiri, W., additional, Montaruli, T., additional, Nan, Y. C., additional, Pang, B. Y., additional, Pattarakijwanich, P., additional, Pei, Z. Y., additional, Qi, M. Y., additional, Ruffolo, D., additional, Rulev, V., additional, Sáiz, A., additional, Shao, L., additional, Shchegolev, O., additional, Sheng, X. D., additional, Shi, J. R., additional, Song, H. C., additional, Stenkin, Yu. V., additional, Stepanov, V., additional, Sun, Q. N., additional, Sun, X. N., additional, Sun, Z. B., additional, Tam, P. H. T., additional, Tang, Z. B., additional, Tian, W. W., additional, Wang, B. D., additional, Wang, C., additional, Wang, H., additional, Wang, H. G., additional, Wang, J. C., additional, Wang, J. S., additional, Wang, L. P., additional, Wang, L. Y., additional, Wang, R. N., additional, Wang, W., additional, Wang, X. G., additional, Wang, X. J., additional, Wang, X. Y., additional, Wang, Y. D., additional, Wang, Y. J., additional, Wang, Y. P., additional, Wang, Z., additional, Wang, Z. H., additional, Wang, Z. X., additional, Wei, D. M., additional, Wei, J. J., additional, Wei, Y. J., additional, Wen, T., additional, Wu, C. Y., additional, Wu, H. R., additional, Wu, S., additional, Wu, W. X., additional, Wu, X. F., additional, Xi, S. Q., additional, Xia, J., additional, Xia, J. J., additional, Xiang, G. M., additional, Xiao, G., additional, Xiao, H. B., additional, Xin, G. G., additional, Xin, Y. L., additional, Xing, Y., additional, Xu, D. L., additional, Xu, R. X., additional, Xue, L., additional, Yan, D. H., additional, Yang, C. W., additional, Yang, F. F., additional, Yang, J. Y., additional, Yang, L. L., additional, Yang, M. J., additional, Yang, R. Z., additional, Yang, S. B., additional, Yao, Y. H., additional, Yao, Z. G., additional, Ye, Y. M., additional, Yin, L. Q., additional, Yin, N., additional, You, X. H., additional, You, Z. Y., additional, Yu, Y. H., additional, Yuan, Q., additional, Zeng, H. D., additional, Zeng, T. X., additional, Zeng, W., additional, Zeng, Z. K., additional, Zha, M., additional, Zhai, X. X., additional, Zhang, B. B., additional, Zhang, H. M., additional, Zhang, H. Y., additional, Zhang, J. L., additional, Zhang, J. W., additional, Zhang, L., additional, Zhang, L. X., additional, Zhang, P. F., additional, Zhang, P. P., additional, Zhang, R., additional, Zhang, S. R., additional, Zhang, S. S., additional, Zhang, X., additional, Zhang, X. P., additional, Zhang, Y., additional, Zhang, Y. F., additional, Zhang, Y. L., additional, Zhao, B., additional, Zhao, J., additional, Zhao, L., additional, Zhao, L. Z., additional, Zhao, S. P., additional, Zheng, F., additional, Zheng, Y., additional, Zhou, B., additional, Zhou, H., additional, Zhou, J. N., additional, Zhou, P., additional, Zhou, R., additional, Zhou, X. X., additional, Zhu, C. G., additional, Zhu, F. R., additional, Zhu, H., additional, Zhu, K. J., additional, and Zuo, X., additional
- Published
- 2021
- Full Text
- View/download PDF
29. Expression analysis of i-type lysozyme gene from Cristaria plicata and enzymatic activity analysis: P-170
- Author
-
Wu, D., Wen, C. G., Hu, B. Q., Hu, X. J., and Tao, Z. Y.
- Published
- 2013
- Full Text
- View/download PDF
30. Gene characterization and expression of selenoprotein W from pearl mussels Cristaria plicata: P-171
- Author
-
Hu, B. Q., Wen, C. G., Wu, D., Hu, X. J., Tao, Z. Y., and Liu, Y.
- Published
- 2013
- Full Text
- View/download PDF
31. Monozygotic twins discordant for port wine stains support the post-zygotic mutation hypothesis
- Author
-
Chen, X D, Hu, X J, Ma, G., and Lin, X X
- Published
- 2013
- Full Text
- View/download PDF
32. A novel type of Potato virus Y recombinant genome, determined for the genetic strain PVYE
- Author
-
Galvino-Costa, S. B. F., dos Reis Figueira, A., Camargos, V. V., Geraldino, P. S., Hu, X-J., Nikolaeva, O. V., Kerlan, C., and Karasev, A. V.
- Published
- 2012
- Full Text
- View/download PDF
33. Interactions between CYP7A1 A-204C and ABCG8 C1199A polymorphisms on lipid lowering with atorvastatin
- Author
-
Wei, K.-K., Zhang, L.-R., Zhang, Y., and Hu, X.-J.
- Published
- 2011
- Full Text
- View/download PDF
34. The crystal structure of exoinulinase INU1
- Author
-
Hu, X.-J., primary
- Published
- 2020
- Full Text
- View/download PDF
35. Stochastic cooling simulation of rare isotope beam and its secondary beam
- Author
-
Hu, X J, primary, Wu, J X, additional, Zhu, G Y, additional, Du, Z, additional, and Yuan, Y J, additional
- Published
- 2020
- Full Text
- View/download PDF
36. Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition
- Author
-
Yang Z.C., Mei Y.S., Chen C.K., Ruan Y. L., and Hu X. J.
- Subjects
congenital, hereditary, and neonatal diseases and abnormalities ,hemic and lymphatic diseases ,parasitic diseases - Abstract
The separated silicon-vacancy (SiV) photoluminescent diamond particles were synthesized on a silica optical fiber by hot filament chemical vapor deposition (HFCVD). The effects of the pre-treated method and chamber pressure on the microstructure and photoluminescence of the diamond particles were investigated. The results show that the diamond particles are homogeneously distributed on the surface of the optical fiber. With the chamber pressure increasing from 1.6 kPa to 3.5 kPa, the shape of the particles transforms from flake to circle, while the diamond particles cannot be deposited on the fiber with the pressure further increased to 4.5 kPa. The samples synthesized under 2.5 kPa chamber pressure are composed of diamond particles with size around 200–400 nm, exhibiting stronger SiV photoluminescence with the width of around 6 nm.
- Published
- 2018
37. Effects of temperature on ascospore germination and penetration of oilseed rape (Brassica napus) leaves by A- or B-group Leptosphaeria maculans (phoma stem canker)
- Author
-
Huang, Y. J., Toscano-Underwood, C., Fitt, B. D. L., Hu, X. J., and Hall, A. M.
- Published
- 2003
38. Crystal structure of 5,11,17,23-tetrabromo-25,27-dihydroxy- 26,28-dimethoxycalix[4]arene, C30H24Br4O4
- Author
-
Luo Y.-H., Hu X.-J., Liu J.-K., Zhang H., Li Y., Yang H.-J., and Wang R.-J.
- Subjects
Physics ,QC1-999 ,Crystallography ,QD901-999 - Abstract
C30H24Br4O4, monoclinic, P121/c1 (no. 14), a = 9.810(1) Å, b = 27.121(6) Å, c = 11.410(3) Å, β = 110.31(1)°, V = 2846.9 Å3, Z = 4, Rgt(F) = 0.068, wRref(F2) = 0.126, T = 295 K.
- Published
- 2006
- Full Text
- View/download PDF
39. Therapeutic effects of chimeric antigen receptor T cells (CAR-T) on relapse/refractory diffuse large B-cell lymphoma (R/R DLBCL): a meta-analysis.
- Author
-
CAO, H.-H., WANG, L.-L., GENG, C.-K., MAO, W.-W., YANG, L.-L., MA, Y., HE, M., ZHANG, R., ZHOU, Y.-Y., LIU, L.-Q., HU, X.-J., YU, J.-X., YANG, L., SHEN, X.-F., YIN, L.-F., GU, X.-Z., and SHEN, Z.-L.
- Abstract
OBJECTIVE: Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). This study aimed to systematically evaluate the efficacy of chimeric antigen receptor T cells (CAR-T) in treating relapse/refractory DLBCL (R/R DLBCL) and associated complete-remission rate (CR). MATERIALS AND METHODS: PubMed, Cochrane Library, CNKI, VIP, CBM, and Wanfang databases were searched, and literature was collected up to January 2019. According to inclusion criteria and exclusion criteria, two researchers independently reviewed and screened literature, extracted required data and crossly checked them. This meta-analysis was conducted using RevMan 5.3 software. RESULTS: This study finally included 13 English literatures and 263 cases. There was no heterogeneity among all these studies, therefore, fixed effect model was used. Meta-analysis findings showed that total CR rate of R/R DLBCL treated with CAR-T was 46.8% (95% CI: 0.408-0.533). Subgroup analysis showed that CR rate of CD28 group was slightly higher [52.5%, with 95% confidence interval (CI): 0.441-0.602] compared to that of 4-1BB group (41.5%, with 95% CI: 0.324-0.510). CR rate of CD19 group was slightly higher (49.2%, with 95% CI: 0.429- 0.556) compared to that of CD20 group (42.2%, with 95% CI: 0.231-0.639). Funnel chart of total CR rate, co-stimulatory factor, and target antigen demonstrated fundamental symmetry. Moreover, age, HSCT administration, CAR-T cell counts, and drug pre-treatment also affected immunotherapy on CAR-T on R/R DLBCL. CONCLUSIONS: CAR-T treatment for R/R DLBCL demonstrated evident curative effect and high complete remission rate. CAR-T cell immunotherapy would be expected to become mainstream therapy for hematolymph system tumors. [ABSTRACT FROM AUTHOR]
- Published
- 2020
40. Moran's I statistic-based nonparametric test with spatio-temporal observations
- Author
-
Xiong, Y., primary, Bingham, D., additional, Braun, W. J., additional, and Hu, X. J., additional
- Published
- 2018
- Full Text
- View/download PDF
41. Bile salt hydrolase from lactobacillus salivarius complex with glycocholic acid and cholic acid
- Author
-
Hu, X.-J., primary
- Published
- 2018
- Full Text
- View/download PDF
42. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip
- Author
-
Hu, X. J., primary, Liu, H. L., additional, Jin, Y. X., additional, Liang, L., additional, Zhu, D. M., additional, Zhu, X. Q., additional, Guo, S. S., additional, Zhou, F. L., additional, and Yang, Y., additional
- Published
- 2018
- Full Text
- View/download PDF
43. n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing.
- Author
-
Hu, X. J., Ye, J. S., Liu, H. J., Shen, Y. G., Chen, X. H., and Hu, H.
- Subjects
- *
NANOCRYSTALS , *OXYGEN , *IONS , *METALLIC films , *TRANSMISSION electron microscopy - Abstract
Ultrananocrystalline diamond (UNCD) films were implanted by oxygen ion and annealed at different temperatures. The electrical and structrual properties of O+-implanted UNCD films were investigated by Hall effects, high-resolution transmission electron microscopy (HRTEM) and uv Raman spectroscopy measurements. The results show that O+-implanted nano-sized diamond grains annealed at 800 °C and above give n-type conductivity to the sample and the UNCD film exhibits n-type resistivity with the carrier mobility of 1∼11 cm2 V-1s-1. With O+ dose increasing from 1015 to 1016 cm-2, diamond phase transits to the amorphous carbon phase accompanied by n-type semiconduction transforming to metallic conduction. In the 1014 cm-2 O+-implanted UNCD film, some amorphous carbon at grain boundaries transits to diamond phase with annealing temperature (Ta) increasing from 500 °C to 800-900 °C, and some of diamond grains are found to be converted to amorphous carbon phase again after 1000 °C annealing. This phase transition is closely relative to the n-type conductivity of the UNCD films, in which n-type conductivity increases with the amorphous carbon phase transiting to diamond phase in the Ta range of 500-900 °C, and it decreases with diamond phase transiting to amorphous carbon phase in the case of 1000 °C annealing. It is indicated that the O+-implanted nano-sized diamond grains dominantly control the n-type conductivity of UNCD film in the Ta range of 800-900 °C, while the grain-boundary-conduction controls the n-type conductivty in UNCD film annealed at 1000 °C. In this case, a novel conduction mechanism that O+-implanted nano-sized diamond grains supply n-type conductivity and the amorphous carbon grain boundaries give a current path to the UNCD films is proposed. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
44. Seed dormancy, germination and soil seed bank of Lamiophlomis rotata and Marmoritis complanatum (Labiatae), two endemic species from Himalaya–Hengduan Mountains
- Author
-
Peng, D.-L., primary, Hu, X.-J., additional, Yang, J., additional, and Sun, H., additional
- Published
- 2017
- Full Text
- View/download PDF
45. EFFECTS OF DIFFERENT DEVELOPMENT STAGES AND STRESS GRADIENT ON DENSITY-BIOMASS EXPONENT AND SIZE INEQUALITY OF HALOXYLON AMMODENDRON (C.A. MEY).
- Author
-
ZHAO, Z. L., HU, X. J., and SONG, Y. Y.
- Subjects
EXPONENTS ,WIND erosion ,TREE populations ,IMPACT craters ,PLANT size ,PLANT biomass ,FOREST biomass - Abstract
Quantifying the biomass-density (M-N) exponent and size inequality in plant communities has become a long-standing issue in both theoretical and empirical studies. The biomass-density (M-N) exponent and size inequality of the tree populations have not been studied so widely as that of herbaceous plants. we studied the variation of biomass-density (M-N) exponent and size inequality at different stages of development clusters along erosion gradient in Haloxylon ammodendron populations. The results showed that the value of the M-N exponent ranged from 1.21 to 1.73 in sapling stages, -0.691 to - 0.437 in Adult stages and -0.934 to -0.812 in senescence phase along a erosion gradient, the M-N exponents at different stages of development showed an downward trend, and indicated that when the density of the cluster increases, which is a process of self-thinning. Moreover, the populations size inequality in different locations decreased with the increase of wind erosion intensity. The size inequality also showed a downward trend in various stages of development, that of the first two stages of development were significantly greater than the later development stages. Our study showed that interactions among individuals at different stages of development have an important impact on the population structure. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
46. Moran's I statistic-based nonparametric test with spatio-temporal observations.
- Author
-
Xiong, Y., Bingham, D., Braun, W. J., and Hu, X. J.
- Subjects
NONPARAMETRIC statistics ,SPATIOTEMPORAL processes ,AUTOCORRELATION (Statistics) ,COMPUTER simulation - Abstract
Moran's I statistic [Moran, (1950), 'Notes on Continuous Stochastic Phenomena', Biometrika, 37, 17-23] has been widely used to evaluate spatial autocorrelation. This paper is concerned with Moran's I-induced testing procedure in residual analysis. We begin with exploring the Moran's I statistic in both its original and extended forms analytically and numerically. We demonstrate that the magnitude of the statistic in general depends not only on the underlying correlation but also on certain heterogeneity in the individual observations. One should exercise caution when interpreting the outcome on correlation by the Moran's I-induced procedure. On the other hand, the effect on the Moran's I due to heterogeneity in the observations enables a regression model checking procedure with the residuals. This novel application of Moran's I is justified by simulation and illustrated by an analysis of wildfire records from Alberta, Canada. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
47. ZHD-Intermediate complex after ZHD crystal soaking in ZEN for 9min
- Author
-
Hu, X.-J., primary, Qi, Q., additional, and Yang, W.-J., additional
- Published
- 2016
- Full Text
- View/download PDF
48. ZHD-ZGR complex after ZHD crystal soaking in ZEN for 30min
- Author
-
Hu, X.-J., primary, Qi, Q., additional, and Yang, W.-J., additional
- Published
- 2016
- Full Text
- View/download PDF
49. ZHD-Intermediate complex after ZHD crystal soaking in ZEN for 20min
- Author
-
Hu, X.-J., primary, Qi, Q., additional, and Yang, W.-J., additional
- Published
- 2016
- Full Text
- View/download PDF
50. ZHD-Intermediate complex after ZHD crystal soaking in ZEN for 12min
- Author
-
Hu, X.-J., primary, Qi, Q., additional, and Yang, W.-J., additional
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.