1. Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer
- Author
-
Xu, Bin, Mu, Fengwen, Liu, Yingzhou, Guo, Rulei, Hu, Shiqian, and Shiomi, Junichiro
- Subjects
Condensed Matter - Materials Science - Abstract
Thermal boundary resistance (TBR) in semiconductor-on-diamond structure bottlenecks efficient heat dissipation in electronic devices. In this study, to reduce the TBR between GaN and diamond, surface-activated bonding with a hybrid SiOx-Ar ion source was applied to achieve an ultrathin interfacial layer. The simultaneous surface activation and slow deposition of the SiOx binder layer enabled precise control over layer thickness (2.5-5.3 nm) and formation of an amorphous heterogeneous nanostructure comprising a SiOx region between two inter-diffusion regions. Crucially, the 2.5-nm-thick interfacial layer achieved a TBR of 8.3 m2-W/GW, a record low for direct-bonded GaN/diamond interface. A remarkable feature is that the TBR is extremely sensitive to the interfacial thickness; rapidly increasing to 34 m2-K/GW on doubling the thickness to 5.3 nm. Theoretical analysis revealed the origin of this increase: a diamond/SiOx interdiffusion layer extend the vibrational frequency, far-exceeding that of crystalline diamond, which increases the lattice vibrational mismatch and suppresses phonon transmission.
- Published
- 2024