1. Low-temperature Quantum Metrology Enhanced by Strong Couplings
- Author
-
Zhang, Ze-Zhou, Luo, Hong-Gang, and Wu, Wei
- Subjects
Quantum Physics - Abstract
Equilibrium probes have been widely used in various noisy quantum metrology schemes. However, such an equilibrium-probe-based metrology scenario severely suffers from the low-temperature-error divergence problem in the weak-coupling regime. To circumvent this limit, we propose a strategy to eliminate the error-divergence problem by utilizing the strong coupling effects, which can be captured by the reaction-coordinate mapping. The strong couplings induce a noncanonical equilibrium state and greatly enhance the metrology performance. It is found that our metrology precision behaves as a polynomial-type scaling relation, which suggests the reduction of temperature can be used as a resource to improve the metrology performance. Our result is sharply contrary to that of the weakcoupling case, in which the metrology precision exponentially decays as the temperature decreases. Paving a way to realize a high-precision noisy quantum metrology at low temperatures, our result reveals the importance of the non-Markovianity in quantum technologies.
- Published
- 2024