1. Conversion of acetone and mixed ketones to hydrocarbons using HZSM-5 catalyst in the carboxylate platform.
- Author
-
Taco-Vasquez S and Holtzapple MT
- Subjects
- Hydrocarbons, Catalysis, Biomass, Acetone, Ketones
- Abstract
In this study, two different feeds were treated to produce hydrocarbons: (1) reagent-grade acetone, and (2) mixed ketones obtained from lignocellulosic biomass via the carboxylate platform. Acetone and mixed ketones underwent catalytic self-condensation over HZSM-5. For acetone, HZSM-5(80) was used, and the experiments were conducted in two sets: (1) vary temperature (305-415°C) at P = 101 kPa (abs) and weight hourly space velocity (WHSV) = 1.3 h-1; (2) vary WHSV (1.3-7.9 h-1) at T = 350 and 415°C, and P = 101 kPa (abs). For acetone over HZSM-5(280), the experiments were conducted in two sets: (1) vary WHSV (1.3-6.5 h-1) at T = 415°C, and P = 101 kPa (abs); and (2) vary WHSV (1.3-11.8 h-1) at P = 790 kPa (abs) and T = 415°C. For mixed ketones, HZSM-5(280) was used at WHSV = 1.9 h-1, T = 430-590°C, and P = 101 kPa (abs). For acetone at higher temperatures, the conversion was 100% and the liquid products were aromatics centered on C8. At low temperatures, conversion was less and the carbon liquid distribution was centered on C9 (mainly mesitylene). For mixed ketones, catalyst deactivation was higher causing product concentrations to change over time, and the highest conversion reached was 40%., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2022 Taco-Vasquez, Holtzapple. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2022
- Full Text
- View/download PDF