1. Regulation of outer kinetochore assembly during meiosis I and II by CENP-A and KNL-2/M18BP1 in C. elegans oocytes.
- Author
-
Bellutti, Laura, Macaisne, Nicolas, El Mossadeq, Layla, Ganeswaran, Thadshagine, Canman, Julie C., and Dumont, Julien
- Subjects
- *
CHROMOSOME segregation , *KINETOCHORE , *CELL division , *CAENORHABDITIS elegans , *MEIOSIS , *CHROMATIN - Abstract
During cell division, chromosomes build kinetochores that attach to spindle microtubules. Kinetochores usually form at the centromeres, which contain CENP-A nucleosomes. The outer kinetochore, which is the core attachment site for microtubules, is composed of the KMN network (Knl1c, Mis12c, and Ndc80c complexes) and is recruited downstream of CENP-A and its partner CENP-C. In C. elegans oocytes, kinetochores have been suggested to form independently of CENP-A nucleosomes. Yet kinetochore formation requires CENP-C, which acts in parallel to the nucleoporin MEL-28ELYS. Here, we used a combination of RNAi and Degron-based depletion of CENP-A (or downstream CENP-C) to demonstrate that both proteins are in fact responsible for a portion of outer kinetochore assembly during meiosis I and are essential for accurate chromosome segregation. The remaining part requires the coordinated action of KNL-2 (ortholog of human M18BP1) and of the nucleoporin MEL-28ELYS. Accordingly, co-depletion of CENP-A (or CENP-C) and KNL-2M18BP1 (or MEL-28ELYS) prevented outer kinetochore assembly in oocytes during meiosis I. We further found that KNL-2M18BP1 and MEL-28ELYS are interdependent for kinetochore localization. Using engineered mutants, we demonstrated that KNL-2M18BP1 recruits MEL-28ELYS at meiotic kinetochores through a specific N-terminal domain, independently of its canonical CENP-A loading factor activity. Finally, we found that meiosis II outer kinetochore assembly was solely dependent on the canonical CENP-A/CENP-C pathway. Thus, like in most cells, outer kinetochore assembly in C. elegans oocytes depends on centromeric chromatin. However, during meiosis I, an additional KNL-2M18BP1 and MEL-28ELYS pathway acts in a non-redundant manner and in parallel to canonical centromeric chromatin. [Display omitted] • CENP-A/C are essential for kinetochore assembly and function in meiosis I and II • KNL-2/MEL-28 form a non-canonical kinetochore assembly pathway during meiosis I • CENP-A/C and KNL-2/MEL-28 coordinate kinetochore assembly during meiosis I • Kinetochore assembly is regulated differently between meiosis I and meiosis II Bellutti et al. demonstrate that during meiosis I in C. elegans oocytes, outer kinetochore assembly relies on both the canonical CENP-A/C centromeric pathway and a parallel non-canonical KNL-2/MEL-28 pathway. By contrast, during meiosis II, outer kinetochore assembly depends solely on the CENP-A/C pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF