1. An asymptotic finite plane deformation analysis of the elastostatic fields at a crack tip in the framework of hyperelastic, isotropic, and nearly incompressible neo-Hookean materials under mode-I loading
- Author
-
Hocine Bechir, Arnaud Frachon, Mounir Methia, Nourredine Aït Hocine, Mécanique des Matériaux et Procédés (MMP), Laboratoire de Mécanique Gabriel Lamé (LaMé), Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)
- Subjects
Physics ,Asymptotic analysis ,Deformation (mechanics) ,Cauchy stress tensor ,Mechanical Engineering ,Constitutive equation ,Mathematical analysis ,Computational Mechanics ,02 engineering and technology ,01 natural sciences ,Finite element method ,010305 fluids & plasmas ,Stress (mechanics) ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Hyperelastic material ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,0103 physical sciences ,Asymptotic expansion ,ComputingMilieux_MISCELLANEOUS - Abstract
In this work, stress and displacement fields were computed around a crack tip in the case of nearly incompressible and isotropic neo-Hookean material. The constitutive equation was linearized, so that the Cauchy stress tensor could be written as a sum of two components: the linear response in term of elastic Hooke’s law and the nonlinear one. Based on this decomposition, an asymptotic analysis has been developed, the fields of linear elastic fracture mechanics (LEFM-theory) are the zero-order terms of the asymptotic expansion. The validity of the proposed theory has been checked in the case of a mode-I crack problem. A numerical model was constructed using a finite element method. It has shown that the computed fields arising from this theory are qualitatively in agreement with those of the finite element simulations.
- Published
- 2019