205,368 results on '"Hoang AT"'
Search Results
2. An approach to hummed-tune and song sequences matching
- Author
-
Pham, Loc Bao, Luong, Huong Hoang, Tran, Phu Thien, Ngo, Phuc Hoang, Nguyen, Vi Hoang, and Nguyen, Thinh
- Subjects
Computer Science - Sound ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
Melody stuck in your head, also known as "earworm", is tough to get rid of, unless you listen to it again or sing it out loud. But what if you can not find the name of that song? It must be an intolerable feeling. Recognizing a song name base on humming sound is not an easy task for a human being and should be done by machines. However, there is no research paper published about hum tune recognition. Adapting from Hum2Song Zalo AI Challenge 2021 - a competition about querying the name of a song by user's giving humming tune, which is similar to Google's Hum to Search. This paper covers details about the pre-processed data from the original type (mp3) to usable form for training and inference. In training an embedding model for the feature extraction phase, we ran experiments with some states of the art, such as ResNet, VGG, AlexNet, MobileNetV2. And for the inference phase, we use the Faiss module to effectively search for a song that matched the sequence of humming sound. The result comes at nearly 94\% in MRR@10 metric on the public test set, along with the top 1 result on the public leaderboard.
- Published
- 2024
- Full Text
- View/download PDF
3. Enhanced Kalman with Adaptive Appearance Motion SORT for Grounded Generic Multiple Object Tracking
- Author
-
Anh, Duy Le Dinh, Tran, Kim Hoang, Nguyen, Quang-Thuc, and Le, Ngan Hoang
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,I.2.7 ,I.2.10 - Abstract
Despite recent progress, Multi-Object Tracking (MOT) continues to face significant challenges, particularly its dependence on prior knowledge and predefined categories, complicating the tracking of unfamiliar objects. Generic Multiple Object Tracking (GMOT) emerges as a promising solution, requiring less prior information. Nevertheless, existing GMOT methods, primarily designed as OneShot-GMOT, rely heavily on initial bounding boxes and often struggle with variations in viewpoint, lighting, occlusion, and scale. To overcome the limitations inherent in both MOT and GMOT when it comes to tracking objects with specific generic attributes, we introduce Grounded-GMOT, an innovative tracking paradigm that enables users to track multiple generic objects in videos through natural language descriptors. Our contributions begin with the introduction of the G2MOT dataset, which includes a collection of videos featuring a wide variety of generic objects, each accompanied by detailed textual descriptions of their attributes. Following this, we propose a novel tracking method, KAM-SORT, which not only effectively integrates visual appearance with motion cues but also enhances the Kalman filter. KAM-SORT proves particularly advantageous when dealing with objects of high visual similarity from the same generic category in GMOT scenarios. Through comprehensive experiments, we demonstrate that Grounded-GMOT outperforms existing OneShot-GMOT approaches. Additionally, our extensive comparisons between various trackers highlight KAM-SORT's efficacy in GMOT, further establishing its significance in the field. Project page: https://UARK-AICV.github.io/G2MOT. The source code and dataset will be made publicly available., Comment: ACCV 2024, main track, oral presentation
- Published
- 2024
4. TP-GMOT: Tracking Generic Multiple Object by Textual Prompt with Motion-Appearance Cost (MAC) SORT
- Author
-
Anh, Duy Le Dinh, Tran, Kim Hoang, and Le, Ngan Hoang
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
While Multi-Object Tracking (MOT) has made substantial advancements, it is limited by heavy reliance on prior knowledge and limited to predefined categories. In contrast, Generic Multiple Object Tracking (GMOT), tracking multiple objects with similar appearance, requires less prior information about the targets but faces challenges with variants like viewpoint, lighting, occlusion, and resolution. Our contributions commence with the introduction of the \textbf{\text{Refer-GMOT dataset}} a collection of videos, each accompanied by fine-grained textual descriptions of their attributes. Subsequently, we introduce a novel text prompt-based open-vocabulary GMOT framework, called \textbf{\text{TP-GMOT}}, which can track never-seen object categories with zero training examples. Within \text{TP-GMOT} framework, we introduce two novel components: (i) {\textbf{\text{TP-OD}}, an object detection by a textual prompt}, for accurately detecting unseen objects with specific characteristics. (ii) Motion-Appearance Cost SORT \textbf{\text{MAC-SORT}}, a novel object association approach that adeptly integrates motion and appearance-based matching strategies to tackle the complex task of tracking multiple generic objects with high similarity. Our contributions are benchmarked on the \text{Refer-GMOT} dataset for GMOT task. Additionally, to assess the generalizability of the proposed \text{TP-GMOT} framework and the effectiveness of \text{MAC-SORT} tracker, we conduct ablation studies on the DanceTrack and MOT20 datasets for the MOT task. Our dataset, code, and models will be publicly available at: https://fsoft-aic.github.io/TP-GMOT
- Published
- 2024
5. Jointly Optimizing Power Allocation and Device Association for Robust IoT Networks under Infeasible Circumstances
- Author
-
Tung, Nguyen Xuan, Van Chien, Trinh, Hoang, Dinh Thai, and Hwang, Won Joo
- Subjects
Computer Science - Information Theory - Abstract
Jointly optimizing power allocation and device association is crucial in Internet-of-Things (IoT) networks to ensure devices achieve their data throughput requirements. Device association, which assigns IoT devices to specific access points (APs), critically impacts resource allocation. Many existing works often assume all data throughput requirements are satisfied, which is impractical given resource limitations and diverse demands. When requirements cannot be met, the system becomes infeasible, causing congestion and degraded performance. To address this problem, we propose a novel framework to enhance IoT system robustness by solving two problems, comprising maximizing the number of satisfied IoT devices and jointly maximizing both the number of satisfied devices and total network throughput. These objectives often conflict under infeasible circumstances, necessitating a careful balance. We thus propose a modified branch-and-bound (BB)-based method to solve the first problem. An iterative algorithm is proposed for the second problem that gradually increases the number of satisfied IoT devices and improves the total network throughput. We employ a logarithmic approximation for a lower bound on data throughput and design a fixed-point algorithm for power allocation, followed by a coalition game-based method for device association. Numerical results demonstrate the efficiency of the proposed algorithm, serving fewer devices than the BB-based method but with faster running time and higher total throughput., Comment: 18 pages, 8 figures, and 4 tables. Accepted by IEEE Transactions on Network and Service Management
- Published
- 2024
6. Comparison of Geant4-DNA and RITRACKS/RITCARD: microdosimetry, nanodosimetry and DNA break predictions
- Author
-
Levrague, Victor, Delorme, R., Roccia, Mathieu, Tran, Ngoc Hoang, Incerti, Sebastien, Beuve, Michael, Testa, Etienne, Plante, Ianik, Rahmanian, Shirin, and Poignant, Floriane
- Subjects
Physics - Medical Physics - Abstract
This work aims at investigating the impact of DNA geometry, compaction and calculation chain on DNA break and chromosome aberration predictions for high charge and energy (HZE) ions, using the Monte Carlo codes Geant4-DNA, RITRACKS and RITCARD. To ensure consistency of ion transport of both codes, we first compared microdosimetry and nanodosimetry spectra for different ions of interest in hadrontherapy and space research. The Rudd model was used for the transport of ions in both models. Developments were made in Geant4 (v11.2) to include periodic boundary conditions (PBC) to account for electron equilibrium in small targets. Excellent agreements were found for both microdosimetric and nanodosimetric spectra for all ion types, with and without PBC. Some discrepancies remain for low-energy deposition events, likely due to differences in electron interaction models. The latest results obtained using the newly available Geant4 example ``dsbandrepair'' will be presented and compared to DNA break predictions obtained with RITCARD.
- Published
- 2024
7. Privacy-Preserving Verifiable Neural Network Inference Service
- Author
-
Riasi, Arman, Guajardo, Jorge, and Hoang, Thang
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
Machine learning has revolutionized data analysis and pattern recognition, but its resource-intensive training has limited accessibility. Machine Learning as a Service (MLaaS) simplifies this by enabling users to delegate their data samples to an MLaaS provider and obtain the inference result using a pre-trained model. Despite its convenience, leveraging MLaaS poses significant privacy and reliability concerns to the client. Specifically, sensitive information from the client inquiry data can be leaked to an adversarial MLaaS provider. Meanwhile, the lack of a verifiability guarantee can potentially result in biased inference results or even unfair payment issues. While existing trustworthy machine learning techniques, such as those relying on verifiable computation or secure computation, offer solutions to privacy and reliability concerns, they fall short of simultaneously protecting the privacy of client data and providing provable inference verifiability. In this paper, we propose vPIN, a privacy-preserving and verifiable CNN inference scheme that preserves privacy for client data samples while ensuring verifiability for the inference. vPIN makes use of partial homomorphic encryption and commit-and-prove succinct non-interactive argument of knowledge techniques to achieve desirable security properties. In vPIN, we develop various optimization techniques to minimize the proving circuit for homomorphic inference evaluation thereby, improving the efficiency and performance of our technique. We fully implemented and evaluated our vPIN scheme on standard datasets (e.g., MNIST, CIFAR-10). Our experimental results show that vPIN achieves high efficiency in terms of proving time, verification time, and proof size, while providing client data privacy guarantees and provable verifiability., Comment: Accepted at the Annual Computer Security Applications Conference (ACSAC) 2024. Source code: github.com/vt-asaplab/vPIN
- Published
- 2024
8. Flight Time Improvement Using Adaptive Model Predictive Control for Unmanned Aerial Vehicles
- Author
-
Ngo, Huy-Hoang, Canh, Thanh Nguyen, and HoangVan, Xiem
- Subjects
Computer Science - Robotics - Abstract
Intelligent aerial platforms such as Unmanned Aerial Vehicles (UAVs) are expected to revolutionize various fields, including transportation, traffic management, field monitoring, industrial production, and agricultural management. Among these, precise control is a critical task that determines the performance and capabilities of UAV systems. However, current research primarily focuses on trajectory tracking and minimizing flight errors, with limited attention to improving flight time. In this paper, we propose a Model Predictive Control (MPC) approach aimed at minimizing flight time while addressing the limitations of the commonly used classical MPC controllers. Furthermore, the MPC method and its application for UAV control are presented in detail. Finally, the results demonstrate that the proposed controller outperforms the standard MPC in terms of efficiency. Moreover, this approach shows potential to become a foundation for integrating intelligent algorithms into basic controllers., Comment: In Vietnamese language, in the 26th National Conference on Electronics, Communications and Information Technology (REV-ECIT 2023), Hanoi, Vietnam
- Published
- 2024
9. Quadrotor Trajectory Tracking Using Linear and Nonlinear Model Predictive Control
- Author
-
Canh, Thanh Nguyen, Ngo, Huy-Hoang, Dang, Anh Viet, and HoangVan, Xiem
- Subjects
Computer Science - Robotics - Abstract
Accurate trajectory tracking is an essential characteristic for the safe navigation of a quadrotor in cluttered or disturbed environments. In this paper, we present in detail two state-of-the-art model-based control frameworks for trajectory tracking: the Linear Model Predictive Controller (LMPC) and the Nonlinear Model Predictive Controller (NMPC). Additionally, the kinematic and dynamic models of the quadrotor are comprehensively described. Finally, a simulation system is implemented to verify feasibility, demonstrating the effectiveness of both controllers., Comment: In Vietnamese language, in the 25th National Conference on Electronics, Communications and Information Technology (REV-ECIT 2022), Hanoi, Vietnam
- Published
- 2024
10. Holographic model for color superconductivity in d-dimension bulk without confinement phase
- Author
-
Vu, Nguyen Hoang
- Subjects
High Energy Physics - Theory - Abstract
We generalize the concept of holography for the color superconductivity (CSC) phase by considering $d$-dimensional Anti de Sitter (AdS) space instead of the traditional 6 dimensions. The corresponding dual field theory is a gauge theory with $SU(N_c)$ symmetry defined in $(d-1)$-dimensions that, despite lacking a confinement phase, retains characteristics consistent with quantum chromodynamics (QCD) CSC. We then use a holographic model based on Einstein-Maxwell gravity and the standard Maxwell interaction in $d$-dimensional AdS space to investigate this phenomenon for the number of colors $N_c\geq 2$ without confinement phase, identifying the dimensions where the model remains valid for $N_c = 2$., Comment: 6 pages, 1 figures, from the Parallel talk of the 7th ICPPA MePhi, Moscow, Russia
- Published
- 2024
11. Agricultural Landscape Understanding At Country-Scale
- Author
-
Dua, Radhika, Saxena, Nikita, Agarwal, Aditi, Wilson, Alex, Singh, Gaurav, Tran, Hoang, Deshpande, Ishan, Kaur, Amandeep, Aggarwal, Gaurav, Nath, Chandan, Basu, Arnab, Batchu, Vishal, Holla, Sharath, Kurle, Bindiya, Missura, Olana, Aggarwal, Rahul, Garg, Shubhika, Shah, Nishi, Singh, Avneet, Tewari, Dinesh, Dondzik, Agata, Adsul, Bharat, Sohoni, Milind, Praveen, Asim Rama, Dangi, Aaryan, Kadivar, Lisan, Abhishek, E, Sudhansu, Niranjan, Hattekar, Kamlakar, Datar, Sameer, Chaithanya, Musty Krishna, Reddy, Anumas Ranjith, Kumar, Aashish, Tirumala, Betala Laxmi, and Talekar, Alok
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Computers and Society - Abstract
Agricultural landscapes are quite complex, especially in the Global South where fields are smaller, and agricultural practices are more varied. In this paper we report on our progress in digitizing the agricultural landscape (natural and man-made) in our study region of India. We use high resolution imagery and a UNet style segmentation model to generate the first of its kind national-scale multi-class panoptic segmentation output. Through this work we have been able to identify individual fields across 151.7M hectares, and delineating key features such as water resources and vegetation. We share how this output was validated by our team and externally by downstream users, including some sample use cases that can lead to targeted data driven decision making. We believe this dataset will contribute towards digitizing agriculture by generating the foundational baselayer., Comment: 34 pages, 7 tables, 15 figs
- Published
- 2024
12. Deep Learning Models for UAV-Assisted Bridge Inspection: A YOLO Benchmark Analysis
- Author
-
Phan, Trong-Nhan, Nguyen, Hoang-Hai, Ha, Thi-Thu-Hien, Thai, Huy-Tan, and Le, Kim-Hung
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Visual inspections of bridges are critical to ensure their safety and identify potential failures early. This inspection process can be rapidly and accurately automated by using unmanned aerial vehicles (UAVs) integrated with deep learning models. However, choosing an appropriate model that is lightweight enough to integrate into the UAV and fulfills the strict requirements for inference time and accuracy is challenging. Therefore, our work contributes to the advancement of this model selection process by conducting a benchmark of 23 models belonging to the four newest YOLO variants (YOLOv5, YOLOv6, YOLOv7, YOLOv8) on COCO-Bridge-2021+, a dataset for bridge details detection. Through comprehensive benchmarking, we identify YOLOv8n, YOLOv7tiny, YOLOv6m, and YOLOv6m6 as the models offering an optimal balance between accuracy and processing speed, with mAP@50 scores of 0.803, 0.837, 0.853, and 0.872, and inference times of 5.3ms, 7.5ms, 14.06ms, and 39.33ms, respectively. Our findings accelerate the model selection process for UAVs, enabling more efficient and reliable bridge inspections.
- Published
- 2024
13. DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation
- Author
-
Phung, Hao, Dao, Quan, Dao, Trung, Phan, Hoang, Metaxas, Dimitris, and Tran, Anh
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git., Comment: Accepted to NeurIPS 2024. Project page: https://hao-pt.github.io/dimsum/
- Published
- 2024
14. Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning
- Author
-
Zhang, Tao, Yan, Ning, Mortazavi, Masood, Nguyen, Hoang H., Deng, Zhongfen, and Yu, Philip S.
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval - Abstract
Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning capability on many NLP tasks. Recasting an NLP task into a text-to-text generation task is a common practice so that generative LLMs can be prompted to resolve it. However, performing document-level relation extraction (DocRE) tasks with generative LLM models is still challenging due to the structured output format of DocRE, which complicates the conversion to plain text. Limited information available in few-shot samples and prompt instructions induce further difficulties and challenges in relation extraction for mentioned entities in a document. In this paper, we represent the structured output as a graph-style triplet rather than natural language expressions and leverage generative LLMs for the DocRE task. Our approach, the Graph-DPEP framework is grounded in the reasoning behind triplet explanation thoughts presented in natural language. In this framework, we first introduce a ``decomposed-plug" method for performing the generation from LLMs over prompts with type-space decomposition to alleviate the burden of distinguishing all relation types. Second, we employ a verifier for calibrating the generation and identifying overlooked query entity pairs. Third, we develop "ensemble-play", reapplying generation on the entire type list by leveraging the reasoning thoughts embedded in a sub-graph associated with the missing query pair to address the missingness issue. Through extensive comparisons with existing prompt techniques and alternative Language Models (LLMs), our framework demonstrates superior performance on publicly available benchmarks in experiments.
- Published
- 2024
15. Asymmetries and Circumstellar Interaction in the Type II SN 2024bch
- Author
-
Andrews, Jennifer E., Shrestha, Manisha, Bostroem, K. Azalee, Dong, Yize, Pearson, Jeniveve, Fausnaugh, M. M., Sand, David J., Valenti, S., Ravi, Aravind P., Hoang, Emily, Hosseinzadeh, Griffin, Ilyin, Ilya, Janzen, Daryl, Lundquist, M. J., Meza, Nicolaz, Smith, Nathan, Jha, Saurabh W., Andrews, Moira, Farah, Joseph, Gonzalez, Estefania Padilla, Howell, D. Andrew, McCully, Curtis, Newsome, Megan, Pellegrino, Craig, Terreran, Giacomo, Wiggins, Patrick, Hsu, Brian, Christy, Collin T., Wang, Xiofeng, Liu, Jialian, and Chen, Liyang
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We present a comprehensive multi-epoch photometric and spectroscopic study of SN 2024bch, a nearby (19.9 Mpc) Type II supernova (SN) with prominent early high ionization emission lines. Optical spectra from 2.9 days after the estimated explosion reveal narrow lines of H I, He II, C IV, and N IV that disappear by day 6. High cadence photometry from the ground and TESS show that the SN brightened quickly and reached a peak M$_V \sim$ $-$17.8 mag within a week of explosion, and late-time photometry suggests a $^{56}$Ni mass of 0.050 M$_{\odot}$. High-resolution spectra from day 8 and 43 trace the unshocked circumstellar medium (CSM) and indicate a wind velocity of 30--40 km s$^{-1}$, a value consistent with a red supergiant (RSG) progenitor. Comparisons between models and the early spectra suggest a pre-SN mass-loss rate of $\dot{M} \sim 10^{-3}-10^{-2}\ M_\odot\ \mathrm{yr}^{-1}$, which is too high to be explained by quiescent mass loss from RSGs, but is consistent with some recent measurements of similar SNe. Persistent blueshifted H I and [O I] emission lines seen in the optical and NIR spectra could be produced by asymmetries in the SN ejecta, while the multi-component H$\alpha$ may indicate continued interaction with an asymmetric CSM well into the nebular phase. SN 2024bch provides another clue to the complex environments and mass-loss histories around massive stars., Comment: Submitted to ApJ
- Published
- 2024
16. Luminous Type II Short-Plateau SN 2023ufx: Asymmetric Explosion of a Partially-Stripped Massive Progenitor
- Author
-
Ravi, Aravind P., Valenti, Stefano, Dong, Yize, Hiramatsu, Daichi, Barmentloo, Stan, Jerkstrand, Anders, Bostroem, K. Azalee, Pearson, Jeniveve, Shrestha, Manisha, Andrews, Jennifer E., Sand, David J., Hosseinzadeh, Griffin, Lundquist, Michael, Hoang, Emily, Mehta, Darshana, Retamal, Nicolas Meza, Martas, Aidan, Jha, Saurabh W., Janzen, Daryl, Subrayan, Bhagya, Howell, D. Andrew, McCully, Curtis, Farah, Joseph, Newsome, Megan, Gonzalez, Estefania Padilla, Terreran, Giacomo, Andrews, Moira, Filippenko, Alexei V., Brink, Thomas G., Zheng, Weikang, Yang, Yi, Vinko, Jozsef, Wheeler, J. Craig, Smith, Nathan, Rho, Jeonghee, Konyves-Toth, Reka, and Gutierrez, Claudia P.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We present supernova (SN) 2023ufx, a unique Type IIP SN with the shortest known plateau duration ($t_\mathrm{PT}$ $\sim$47 days), a luminous V-band peak ($M_{V}$ = $-$18.42 $\pm$ 0.08 mag), and a rapid early decline rate ($s1$ = 3.47 $\pm$ 0.09 mag (50 days)$^{-1}$). By comparing observed photometry to a hydrodynamic MESA+STELLA model grid, we constrain the progenitor to be a massive red supergiant with M$_\mathrm{ZAMS}$ $\simeq$19 - 25 M$_{\odot}$. Independent comparisons with nebular spectral models also suggest an initial He-core mass of $\sim$6 M$_{\odot}$, and thus a massive progenitor. For a Type IIP, SN 2023ufx produced an unusually high amount of nickel ($^{56}$Ni) $\sim$0.14 $\pm$ 0.02 M$_{\odot}$, during the explosion. We find that the short plateau duration in SN 2023ufx can be explained with the presence of a small hydrogen envelope (M$_\mathrm{H_\mathrm{env}}$ $\simeq$1.2 M$_{\odot}$), suggesting partial stripping of the progenitor. About $\simeq$0.09 M$_{\odot}$ of CSM through mass loss from late-time stellar evolution of the progenitor is needed to fit the early time ($\lesssim$10 days) pseudo-bolometric light curve. Nebular line diagnostics of broad and multi-peak components of [O I] $\lambda\lambda$6300, 6364, H$\alpha$, and [Ca II] $\lambda \lambda$7291, 7323 suggest that the explosion of SN 2023ufx could be inherently asymmetric, preferentially ejecting material along our line-of-sight., Comment: Submitted to ApJ, 30 pages, 19 figures
- Published
- 2024
17. Prompting with Phonemes: Enhancing LLM Multilinguality for non-Latin Script Languages
- Author
-
Nguyen, Hoang, Mahajan, Khyati, Yadav, Vikas, Yu, Philip S., Hashemi, Masoud, and Maheshwary, Rishabh
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
- Published
- 2024
18. Centered colorings in minor-closed graph classes
- Author
-
Hodor, Jędrzej, La, Hoang, Micek, Piotr, and Rambaud, Clément
- Subjects
Mathematics - Combinatorics ,Computer Science - Discrete Mathematics - Abstract
A vertex coloring $\varphi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ of $G$, either $\varphi$ uses more than $p$ colors on $H$, or there is a color that appears exactly once on $H$. We prove that for every fixed positive integer $t$, every $K_t$-minor-free graph admits a $p$-centered coloring using $\mathcal{O}(p^{t-1})$ colors., Comment: 23 pages, 10 figures
- Published
- 2024
19. The JCMT BISTRO Survey: The Magnetic Fields of the IC 348 Star-forming Region
- Author
-
Choi, Youngwoo, Kwon, Woojin, Pattle, Kate, Arzoumanian, Doris, Bourke, Tyler L., Hoang, Thiem, Hwang, Jihye, Koch, Patrick M., Sadavoy, Sarah, Bastien, Pierre, Furuya, Ray, Lai, Shih-Ping, Qiu, Keping, Ward-Thompson, Derek, Berry, David, Byun, Do-Young, Chen, Huei-Ru Vivien, Chen, Wen Ping, Chen, Mike, Chen, Zhiwei, Ching, Tao-Chung, Cho, Jungyeon, Choi, Minho, Choi, Yunhee, Coudé, Simon, Chrysostomou, Antonio, Chung, Eun Jung, Dai, Sophia, Debattista, Victor, Di Francesco, James, Diep, Pham Ngoc, Doi, Yasuo, Duan, Hao-Yuan, Duan, Yan, Eswaraiah, Chakali, Fanciullo, Lapo, Fiege, Jason, Fissel, Laura M., Franzmann, Erica, Friberg, Per, Friesen, Rachel, Fuller, Gary, Gledhill, Tim, Graves, Sarah, Greaves, Jane, Griffin, Matt, Gu, Qilao, Han, Ilseung, Hasegawa, Tetsuo, Houde, Martin, Hull, Charles L. H., Inoue, Tsuyoshi, Inutsuka, Shu-ichiro, Iwasaki, Kazunari, Jeong, Il-Gyo, Johnstone, Doug, Karoly, Janik, Könyves, Vera, Kang, Ji-hyun, Lacaille, Kevin, Law, Chi-Yan, Lee, Chang Won, Lee, Hyeseung, Lee, Chin-Fei, Lee, Jeong-Eun, Lee, Sang-Sung, Li, Dalei, Li, Di, Li, Guangxing, Li, Hua-bai, Lin, Sheng-Jun, Liu, Hong-Li, Liu, Tie, Liu, Sheng-Yuan, Liu, Junhao, Longmore, Steven, Lu, Xing, Lyo, A-Ran, Mairs, Steve, Matsumura, Masafumi, Matthews, Brenda, Moriarty-Schieven, Gerald, Nagata, Tetsuya, Nakamura, Fumitaka, Nakanishi, Hiroyuki, Ngoc, Nguyen Bich, Ohashi, Nagayoshi, Onaka, Takashi, Park, Geumsook, Parsons, Harriet, Peretto, Nicolas, Priestley, Felix, Pyo, Tae-Soo, Qian, Lei, Rao, Ramprasad, Rawlings, Jonathan, Rawlings, Mark, Retter, Brendan, Richer, John, Rigby, Andrew, Saito, Hiro, Savini, Giorgio, Seta, Masumichi, Sharma, Ekta, Shimajiri, Yoshito, Shinnaga, Hiroko, Soam, Archana, Kang, Miju, Kataoka, Akimasa, Kawabata, Koji, Kemper, Francisca, Kim, Jongsoo, Kim, Shinyoung, Kim, Gwanjeong, Kim, Kyoung Hee, Kim, Mi-Ryang, Kim, Kee-Tae, Kim, Hyosung, Kirchschlager, Florian, Kirk, Jason, Kobayashi, Masato I. N., Kusune, Takayoshi, Kwon, Jungmi, Tamura, Motohide, Tang, Ya-Wen, Tang, Xindi, Tomisaka, Kohji, Tsukamoto, Yusuke, Viti, Serena, Wang, Hongchi, Wang, Jia-Wei, Wu, Jintai, Xie, Jinjin, Yang, Meng-Zhe, Yen, Hsi-Wei, Yoo, Hyunju, Yuan, Jinghua, Yun, Hyeong-Sik, Zenko, Tetsuya, Zhang, Guoyin, Zhang, Yapeng, Zhang, Chuan-Peng, Zhou, Jianjun, Zhu, Lei, de Looze, Ilse, André, Philippe, Dowell, C. Darren, Eden, David, Eyres, Stewart, Falle, Sam, Gouellec, Valentin J. M. Le, Poidevin, Frédérick, and van Loo, Sven
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present 850 $\mu$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary structure of the region. The polarization fraction decreases with intensity, and we estimate the trend by power-law and the mean of the Rice distribution fittings. The power indices for the cores are much smaller than 1, indicative of possible grain growth to micron size in the cores. We also measure the magnetic field strengths of the two cores and the filamentary area separately by applying the Davis-Chandrasekhar-Fermi method and its alternative version for compressed medium. The estimated mass-to-flux ratios are 0.45-2.20 and 0.63-2.76 for HH 211 MMS and IC 348 MMS, respectively, while the ratios for the filament is 0.33-1.50. This result may suggest that the transition from subcritical to supercritical conditions occurs at the core scale ($\sim$ 0.05 pc) in the region. In addition, we study the energy balance of the cores and find that the relative strength of turbulence to the magnetic field tends to be stronger for IC 348 MMS than HH 211 MMS. The result could potentially explain the different configurations inside the two cores: a single protostellar system in HH 211 MMS and multiple protostars in IC 348 MMS., Comment: Accepted for publication in ApJ. 21 pages, 12 figures
- Published
- 2024
20. A tamed-adaptive Milstein scheme for stochastic differential equations with low regularity coefficients
- Author
-
Vu, Thi-Huong, Ngo, Hoang-Long, Luong, Duc-Trong, and Khue, Tran Ngoc
- Subjects
Mathematics - Probability ,Mathematics - Numerical Analysis - Abstract
We propose a tamed-adaptive Milstein scheme for stochastic differential equations in which the first-order derivatives of the coefficients are locally H\"older continuous of order $\alpha$. We show that the scheme converges in the $L_2$-norm with a rate of $(1+\alpha)/2$ over both finite intervals $[0, T]$ and the infinite interval $(0, +\infty)$, under certain growth conditions on the coefficients.
- Published
- 2024
21. Toward Integrating Semantic-aware Path Planning and Reliable Localization for UAV Operations
- Author
-
Canh, Thanh Nguyen, Ngo, Huy-Hoang, HoangVan, Xiem, and Chong, Nak Young
- Subjects
Computer Science - Robotics - Abstract
Localization is one of the most crucial tasks for Unmanned Aerial Vehicle systems (UAVs) directly impacting overall performance, which can be achieved with various sensors and applied to numerous tasks related to search and rescue operations, object tracking, construction, etc. However, due to the negative effects of challenging environments, UAVs may lose signals for localization. In this paper, we present an effective path-planning system leveraging semantic segmentation information to navigate around texture-less and problematic areas like lakes, oceans, and high-rise buildings using a monocular camera. We introduce a real-time semantic segmentation architecture and a novel keyframe decision pipeline to optimize image inputs based on pixel distribution, reducing processing time. A hierarchical planner based on the Dynamic Window Approach (DWA) algorithm, integrated with a cost map, is designed to facilitate efficient path planning. The system is implemented in a photo-realistic simulation environment using Unity, aligning with segmentation model parameters. Comprehensive qualitative and quantitative evaluations validate the effectiveness of our approach, showing significant improvements in the reliability and efficiency of UAV localization in challenging environments., Comment: In The 24th International Conference on Control, Automation, and Systems (ICCAS 2024), Jeju, Korea
- Published
- 2024
22. Protocol Design for Irregular Repetition Slotted ALOHA With Energy Harvesting to Maintain Information Freshness
- Author
-
Ngo, Khac-Hoang, Nguyen, Diep N., and Thi, Thai-Mai Dinh
- Subjects
Computer Science - Information Theory - Abstract
We investigate an internet-of-things system where energy-harvesting devices send status updates to a common receiver using the irregular repetition slotted ALOHA (IRSA) protocol. Energy shortages in these devices can cause transmission failures that are unknown to the receiver, halting the decoding process. We resolve this issue by proposing a method for the receiver to perfectly identify these failures. Furthermore, we optimize the degree distribution of the protocol to ensure the freshness of the status updates. The optimized degree distribution offsets the negative impact of the potential transmission failures. Our numerical results show that, despite energy harvesting, IRSA can maintain a level of information freshness comparable to systems with unlimited energy., Comment: submitted to IEEE WCNC 2025
- Published
- 2024
23. Small coresets via negative dependence: DPPs, linear statistics, and concentration
- Author
-
Bardenet, Rémi, Ghosh, Subhroshekhar, Simon-Onfroy, Hugo, and Tran, Hoang-Son
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Mathematics - Probability - Abstract
Determinantal point processes (DPPs) are random configurations of points with tunable negative dependence. Because sampling is tractable, DPPs are natural candidates for subsampling tasks, such as minibatch selection or coreset construction. A \emph{coreset} is a subset of a (large) training set, such that minimizing an empirical loss averaged over the coreset is a controlled replacement for the intractable minimization of the original empirical loss. Typically, the control takes the form of a guarantee that the average loss over the coreset approximates the total loss uniformly across the parameter space. Recent work has provided significant empirical support in favor of using DPPs to build randomized coresets, coupled with interesting theoretical results that are suggestive but leave some key questions unanswered. In particular, the central question of whether the cardinality of a DPP-based coreset is fundamentally smaller than one based on independent sampling remained open. In this paper, we answer this question in the affirmative, demonstrating that \emph{DPPs can provably outperform independently drawn coresets}. In this vein, we contribute a conceptual understanding of coreset loss as a \emph{linear statistic} of the (random) coreset. We leverage this structural observation to connect the coresets problem to a more general problem of concentration phenomena for linear statistics of DPPs, wherein we obtain \emph{effective concentration inequalities that extend well-beyond the state-of-the-art}, encompassing general non-projection, even non-symmetric kernels. The latter have been recently shown to be of interest in machine learning beyond coresets, but come with a limited theoretical toolbox, to the extension of which our result contributes. Finally, we are also able to address the coresets problem for vector-valued objective functions, a novelty in the coresets literature., Comment: Accepted at NeurIPS 2024 (Spotlight Paper). Authors are listed in alphabetical order
- Published
- 2024
24. Observation of fractional evolution in nonlinear optics
- Author
-
Hoang, Van Thuy, Widjaja, Justin, Qiang, Y. Long, Liu, Maxwell, Alexander, Tristram J., Runge, Antoine F. J., and de Sterke, C. Martijn
- Subjects
Physics - Optics - Abstract
The idea of fractional derivatives has a long history that dates back centuries. Apart from their intriguing mathematical properties, fractional derivatives have been studied widely in physics, for example in quantum mechanics and generally in systems with nonlocal temporal or spatial interactions. However, systematic experiments have been rare due to challenges associated with the physical implementation. Here we report the observation and full characterization of a family of temporal optical solitons that are governed by a nonlinear wave equation with a fractional Laplacian. This equation has solutions with unique properties such as non-exponential tails and a very small time-bandwidth product.
- Published
- 2024
25. Biologically-Inspired Technologies: Integrating Brain-Computer Interface and Neuromorphic Computing for Human Digital Twins
- Author
-
Shang, Chen, Yu, Jiadong, and Hoang, Dinh Thai
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Networking and Internet Architecture - Abstract
The integration of the Metaverse into a human-centric ecosystem has intensified the need for sophisticated Human Digital Twins (HDTs) that are driven by the multifaceted human data. However, the effective construction of HDTs faces significant challenges due to the heterogeneity of data collection devices, the high energy demands associated with processing intricate data, and concerns over the privacy of sensitive information. This work introduces a novel biologically-inspired (bio-inspired) HDT framework that leverages Brain-Computer Interface (BCI) sensor technology to capture brain signals as the data source for constructing HDT. By collecting and analyzing these signals, the framework not only minimizes device heterogeneity and enhances data collection efficiency, but also provides richer and more nuanced physiological and psychological data for constructing personalized HDTs. To this end, we further propose a bio-inspired neuromorphic computing learning model based on the Spiking Neural Network (SNN). This model utilizes discrete neural spikes to emulate the way of human brain processes information, thereby enhancing the system's ability to process data effectively while reducing energy consumption. Additionally, we integrate a Federated Learning (FL) strategy within the model to strengthen data privacy. We then conduct a case study to demonstrate the performance of our proposed twofold bio-inspired scheme. Finally, we present several challenges and promising directions for future research of HDTs driven by bio-inspired technologies., Comment: 8 pages, 4 figures
- Published
- 2024
26. VISUALCODER: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning
- Author
-
Le, Cuong Chi, Truong-Vinh, Hoang-Chau, Phan, Huy Nhat, Le, Dung Duy, Nguyen, Tien N., and Bui, Nghi D. Q.
- Subjects
Computer Science - Software Engineering - Abstract
Predicting program behavior and reasoning about code execution remain significant challenges in software engineering, particularly for large language models (LLMs) designed for code analysis. While these models excel at understanding static syntax, they often struggle with dynamic reasoning tasks. We introduce Visual Coder, a simple yet effective approach that enhances code reasoning by integrating multimodal Chain-of-Thought (CoT) reasoning with a visual Control Flow Graph (CFG). By aligning code snippets with their corresponding CFGs, Visual Coder provides deeper insights into execution flow, enabling more accurate predictions of code behavior. Our experiments demonstrate that augmenting LLMs with visual CFGs significantly outperforms text-based CFG descriptions in code reasoning tasks. We address challenges in multimodal CoT integration through a reference mechanism, ensuring consistency between code and its execution path, thereby improving performance in program behavior prediction, error detection, and output generation.
- Published
- 2024
27. Optimized Homomorphic Vector Permutation From New Decomposition Techniques
- Author
-
Ma, Xirong, Fang, Junling, Duong, Dung Hoang, Jiang, Yali, and Ge, Chunpeng
- Subjects
Computer Science - Cryptography and Security - Abstract
Homomorphic vector permutation is fundamental to privacy-preserving computations based on batch-encoded homomorphic encryption, underpinning nearly all homomorphic matrix operation algorithms and predominantly influencing their complexity. A potential approach to optimize this critical component lies in permutation decomposition, a technique we consider as not yet fully explored. In this paper, we enhance the efficiency of homomorphic permutations through novel decomposition techniques, thus advancing privacy-preserving computations. We start by estimating the ideal performance of decompositions on permutations and proposing an algorithm that searches depth-1 ideal decomposition solutions. This enables us to ascertain the full-depth ideal decomposability of specific permutations in homomorphic matrix transposition (SIGSAC 18) and multiplication (CCSW 22), allowing these privacy-preserving computations to achieve asymptotic improvement in speed and rotation key reduction. We further devise a new method for computing arbitrary homomorphic permutations, aiming to approximate the performance of ideal decomposition, as permutations with weak structures are unlikely to be ideally factorized. Our design deviates from the conventional scope of permutation decomposition. It outperforms state-of-the-art techniques (EUROCRYPT 12, CRYPTO 14) with a speed-up of up to $\times2.27$ under the minimum requirement of rotation keys., Comment: Submission on 11/11/2024, context and authors' info updated
- Published
- 2024
28. SimSiam Naming Game: A Unified Approach for Representation Learning and Emergent Communication
- Author
-
Hoang, Nguyen Le, Taniguchi, Tadahiro, Tianwei, Fang, and Taniguchi, Akira
- Subjects
Computer Science - Computation and Language - Abstract
Emergent communication, driven by generative models, enables agents to develop a shared language for describing their individual views of the same objects through interactions. Meanwhile, self-supervised learning (SSL), particularly SimSiam, uses discriminative representation learning to make representations of augmented views of the same data point closer in the representation space. Building on the prior work of VI-SimSiam, which incorporates a generative and Bayesian perspective into the SimSiam framework via variational inference (VI) interpretation, we propose SimSiam+VAE, a unified approach for both representation learning and emergent communication. SimSiam+VAE integrates a variational autoencoder (VAE) into the predictor of the SimSiam network to enhance representation learning and capture uncertainty. Experimental results show that SimSiam+VAE outperforms both SimSiam and VI-SimSiam. We further extend this model into a communication framework called the SimSiam Naming Game (SSNG), which applies the generative and Bayesian approach based on VI to develop internal representations and emergent language, while utilizing the discriminative process of SimSiam to facilitate mutual understanding between agents. In experiments with established models, despite the dynamic alternation of agent roles during interactions, SSNG demonstrates comparable performance to the referential game and slightly outperforms the Metropolis-Hastings naming game.
- Published
- 2024
29. Improving Generalization in Visual Reasoning via Self-Ensemble
- Author
-
Nguyen, Tien-Huy, Tran, Quang-Khai, and Quang-Hoang, Anh-Tuan
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The cognitive faculty of visual reasoning necessitates the integration of multimodal perceptual processing and commonsense and external knowledge of the world. In recent years, a plethora of large vision-language models (LVLMs) have been proposed, demonstrating outstanding power and exceptional proficiency in commonsense reasoning across diverse domains and tasks. Nevertheless, training such LVLMs requires a lot of costly resources. Recent approaches, instead of training LVLMs from scratch on various large datasets, focus on exploring ways to take advantage of the capabilities of many different LVLMs, such as ensemble methods. In this work, we propose self-ensemble, a novel method that improves the generalization and visual reasoning of the model without updating any parameters, a training-free method. Our key insight is that we realized that LVLM itself can ensemble without the need for any other LVLMs, which helps to unlock their internal capabilities. Extensive experiments on various benchmarks demonstrate the effectiveness of our method in achieving state-of-the-art (SOTA) performance on SketchyVQA, Outside Knowledge VQA, and out-of-distribution VQA tasks.
- Published
- 2024
30. Optimization and Characterization of Thermoelectric Properties in Selenium-Doped Bismuth Telluride Ultra Thin Films
- Author
-
Nguyen, Kien Trung, Dong, Lan Anh, Dinh, Hien Thi, Bui, Thi Huyen Trang, Chu, Son Truong, Nguyen-Tran, Thuat, Hoang, Chi Hieu, and Nguyen, Hung Quoc
- Subjects
Condensed Matter - Materials Science - Abstract
Thermoelectricity in telluride materials is often improved by replacing telluride with selenium in its crystal. Most work, however, focuses on bulk crystal and leaves the 2D thin films intact. In this paper, we optimize the fabrication of selenium-doped bismuth telluride (Bi$_2$Te$_{3-\rm{x}}$Se$_{\rm{x}}$) thin films using a 3-source thermal co-evaporation. Thermoelectric properties, including the Seebeck coefficient and electrical resistivity, are systematically characterized to evaluate the material's performance for thermoelectric applications near room temperature. The thin films were deposited under carefully controlled conditions, with the evaporation rates of bismuth, tellurium, and selenium precisely monitored to achieve the desired stoichiometry and crystalline phase. Finally, thermoelectricity in Bi$_2$Te$_{3-\rm{x}}$Se$_{\rm{x}}$ at the ultra-thin regime is investigated. We consistently obtain films with thickness near 30 nm with a Seebeck coefficient of 400 $\mu$V/K and a power factor of 1 mW/mK$^2$.
- Published
- 2024
31. Around Hikita-Nakajima conjecture for nilpotent orbits and parabolic Slodowy varieties
- Author
-
Hoang, Do Kien, Krylov, Vasily, and Matvieievskyi, Dmytro
- Subjects
Mathematics - Representation Theory - Abstract
Let $G$ be a complex reductive algebraic group. In arxiv:2108.03453 Ivan Losev, Lucas mason-Brown and the third-named author suggested a symplectic duality between nilpotent Slodowy slices in $\mathfrak{g}^\vee$ and affinizations of certain $G$-equivariant covers of special nilpotent orbits. In this paper, we study the various versions of Hikita conjecture for this pair. We show that the original statement of the conjecture does not hold for the pairs in question and propose a refined version. We discuss the general approach towards the proof of the refined Hikita conjecture and prove this refined version for the parabolic Slodowy varieties, which includes many of the cases considered in arxiv:2108.03453 and more. Applied to the setting of arxiv:2108.03453, the refined Hikita conjecture explains the importance of special unipotent ideals from the symplectic duality point of view. We also discuss applications of our results. In the appendices, we discuss some classical questions in Lie theory that relate the refined version and the original version. We also explain how one can use our results to simplify some proofs of known results in the literature. As a combinatorial application of our results we observe an interesting relation between the geometry of Springer fibers and left Kazhdan-Lusztig cells in the corresponding Weyl group., Comment: 88 pages, comments are welcome!
- Published
- 2024
32. Unmixed and sequentially Cohen-Macaulay skew tableau ideals
- Author
-
Hoang, Do Trong and Vu, Thanh
- Subjects
Mathematics - Commutative Algebra - Abstract
We associate a {\it skew tableau ideal} to each filling of a skew Ferrers diagram with positive integers. We classify all unmixed and sequentially Cohen-Macaulay skew tableau ideals. Consequently, we classify all Cohen-Macaulay, Buchsbaum, and generalized Cohen-Macaulay skew tableau ideals., Comment: 16 pages
- Published
- 2024
33. Evaluating Cost-Accuracy Trade-offs in Multimodal Search Relevance Judgements
- Author
-
Terragni, Silvia, Cuong, Hoang, Daiber, Joachim, Gudipati, Pallavi, and Mendes, Pablo N.
- Subjects
Computer Science - Machine Learning ,Computer Science - Computation and Language ,Computer Science - Information Retrieval - Abstract
Large Language Models (LLMs) have demonstrated potential as effective search relevance evaluators. However, there is a lack of comprehensive guidance on which models consistently perform optimally across various contexts or within specific use cases. In this paper, we assess several LLMs and Multimodal Language Models (MLLMs) in terms of their alignment with human judgments across multiple multimodal search scenarios. Our analysis investigates the trade-offs between cost and accuracy, highlighting that model performance varies significantly depending on the context. Interestingly, in smaller models, the inclusion of a visual component may hinder performance rather than enhance it. These findings highlight the complexities involved in selecting the most appropriate model for practical applications.
- Published
- 2024
34. PRACT: Optimizing Principled Reasoning and Acting of LLM Agent
- Author
-
Liu, Zhiwei, Yao, Weiran, Zhang, Jianguo, Murthy, Rithesh, Yang, Liangwei, Liu, Zuxin, Lan, Tian, Zhu, Ming, Tan, Juntao, Kokane, Shirley, Hoang, Thai, Niebles, Juan Carlos, Heinecke, Shelby, Wang, Huan, Savarese, Silvio, and Xiong, Caiming
- Subjects
Computer Science - Artificial Intelligence - Abstract
We introduce the Principled Reasoning and Acting (PRAct) framework, a novel method for learning and enforcing action principles from trajectory data. Central to our approach is the use of text gradients from a reflection and optimization engine to derive these action principles. To adapt action principles to specific task requirements, we propose a new optimization framework, Reflective Principle Optimization (RPO). After execution, RPO employs a reflector to critique current action principles and an optimizer to update them accordingly. We develop the RPO framework under two scenarios: Reward-RPO, which uses environmental rewards for reflection, and Self-RPO, which conducts self-reflection without external rewards. Additionally, two RPO methods, RPO-Traj and RPO-Batch, is introduced to adapt to different settings. Experimental results across four environments demonstrate that the PRAct agent, leveraging the RPO framework, effectively learns and applies action principles to enhance performance., Comment: Accepted to SIG CoNLL 2024
- Published
- 2024
35. Bearing-Only Solution for Fermat-Weber Location Problem: Generalized Algorithms
- Author
-
Le-Phan, Nhat-Minh, Nguyen, Phuoc Doan, Ahn, Hyo-Sung, and Trinh, Minh Hoang
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Mathematics - Optimization and Control - Abstract
This paper presents novel algorithms for the Fermat-Weber Location Problem, guiding an autonomous agent to the point that minimizes the weighted sum of Euclidean distances to some beacons using only bearing measurements. The existing results address only the simple scenario where the beacons are stationary and the agent is modeled by a single integrator. In this paper, we propose a number of bearing-only algorithms that let the agent, which can be modeled as either a single-integrator or a double-integrator, follow the Fermat-Weber point of a group of stationary or moving beacons. The theoretical results are rigorously proven using Lyapunov theory and supported with simulation examples., Comment: 14 pages (double-column), 7 figures, submitted to a journal
- Published
- 2024
36. Sort-free Gaussian Splatting via Weighted Sum Rendering
- Author
-
Hou, Qiqi, Rauwendaal, Randall, Li, Zifeng, Le, Hoang, Farhadzadeh, Farzad, Porikli, Fatih, Bourd, Alexei, and Said, Amir
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Recently, 3D Gaussian Splatting (3DGS) has emerged as a significant advancement in 3D scene reconstruction, attracting considerable attention due to its ability to recover high-fidelity details while maintaining low complexity. Despite the promising results achieved by 3DGS, its rendering performance is constrained by its dependence on costly non-commutative alpha-blending operations. These operations mandate complex view dependent sorting operations that introduce computational overhead, especially on the resource-constrained platforms such as mobile phones. In this paper, we propose Weighted Sum Rendering, which approximates alpha blending with weighted sums, thereby removing the need for sorting. This simplifies implementation, delivers superior performance, and eliminates the "popping" artifacts caused by sorting. Experimental results show that optimizing a generalized Gaussian splatting formulation to the new differentiable rendering yields competitive image quality. The method was implemented and tested in a mobile device GPU, achieving on average $1.23\times$ faster rendering.
- Published
- 2024
37. Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
- Author
-
Van Huynh, Nguyen, Zhang, Bolun, Tran, Dinh-Hieu, Hoang, Dinh Thai, Nguyen, Diep N., Zheng, Gan, Niyato, Dusit, and Pham, Quoc-Viet
- Subjects
Computer Science - Networking and Internet Architecture ,Computer Science - Artificial Intelligence - Abstract
Spectrum access is an essential problem in device-to-device (D2D) communications. However, with the recent growth in the number of mobile devices, the wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications. To address this problem, this paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals to transmit their data when the shared spectrum is occupied by mobile users. To obtain the optimal spectrum access policy, i.e., stay idle or access the shared spectrum and perform active transmissions or backscattering ambient RF signals for transmissions, to maximize the average throughput for D2D users, deep reinforcement learning (DRL) can be adopted. However, DRL-based solutions may require long training time due to the curse of dimensionality issue as well as complex deep neural network architectures. For that, we develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters compared to DRL thanks to the quantum superposition and quantum entanglement principles. Specifically, instead of using conventional deep neural networks, the proposed quantum RL algorithm uses a parametrized quantum circuit to approximate an optimal policy. Extensive simulations then demonstrate that the proposed solution not only can significantly improve the average throughput of D2D devices when the shared spectrum is busy but also can achieve much better performance in terms of convergence rate and learning complexity compared to existing DRL-based methods., Comment: 12 pages, 7 figures
- Published
- 2024
38. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
39. Who's Who: Large Language Models Meet Knowledge Conflicts in Practice
- Author
-
Pham, Quang Hieu, Ngo, Hoang, Luu, Anh Tuan, and Nguyen, Dat Quoc
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval - Abstract
Retrieval-augmented generation (RAG) methods are viable solutions for addressing the static memory limits of pre-trained language models. Nevertheless, encountering conflicting sources of information within the retrieval context is an inevitable practical challenge. In such situations, the language models are recommended to transparently inform users about the conflicts rather than autonomously deciding what to present based on their inherent biases. To analyze how current large language models (LLMs) align with our recommendation, we introduce WhoQA, a public benchmark dataset to examine model's behavior in knowledge conflict situations. We induce conflicts by asking about a common property among entities having the same name, resulting in questions with up to 8 distinctive answers. WhoQA evaluation set includes 5K questions across 13 Wikidata property types and 150K Wikipedia entities. Our experiments show that despite the simplicity of WhoQA questions, knowledge conflicts significantly degrades LLMs' performance in RAG settings., Comment: Accepted to EMNLP 2024 Findings
- Published
- 2024
40. Ichigo: Mixed-Modal Early-Fusion Realtime Voice Assistant
- Author
-
Dao, Alan, Vu, Dinh Bach, and Ha, Huy Hoang
- Subjects
Computer Science - Computation and Language ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
Large Language Models (LLMs) have revolutionized natural language processing, but their application to speech-based tasks remains challenging due to the complexities of integrating audio and text modalities. This paper introduces Ichigo, a mixed-modal model that seamlessly processes interleaved sequences of speech and text. Utilizing a tokenized early-fusion approach, Ichigo quantizes speech into discrete tokens and employs a uniform transformer-based architecture for both speech and text modalities. This method enables joint reasoning and generation across modalities without the need for separate adapters. We present a comprehensive training methodology, including pre-training on multilingual speech recognition datasets and fine-tuning on a curated instruction dataset. Ichigo demonstrates state-of-the-art performance on speech question-answering benchmarks, outperforming existing open-source speech language models and achieving comparable results to cascaded systems. Notably, Ichigo exhibits a latency of just 111 ms to first token generation, significantly lower than current models. Our approach not only advances the field of multimodal AI but also provides a framework for smaller research teams to contribute effectively to open-source speech-language models.
- Published
- 2024
41. Design and Implementation of Hedge Algebra Controller using Recursive Semantic Values for Cart-pole System
- Author
-
Dzoan, Nhat-Minh, Mac, Thi-Thoa, Ly, Hoang-Hiep, and Nguyen, Xuan-Thuan
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper presents a novel approach to designing a Hedge Algebra Controller named Hedge Algebra Controller with Recursive Semantic Values (RS-HAC). This approach incorporates several newly introduced concepts, including Semantically Quantifying Simplified Mapping (SQSM) featuring a recursive algorithm, Infinite General Semantization (IGS), and Infinite General De-semantization (IGDS). These innovations aim to enhance the optimizability, scalability, and flexibility of hedge algebra theory, allowing the design of a hedge algebra-based controller to be carried out more efficiently and straightforward. An application of stabilizing an inverted pendulum on a cart is conducted to illustrate the superiority of the proposed approach. Comparisons are made between RS-HAC and a fuzzy controller of Takagi-Sugeno type (FC), as well as a linear quadratic regulator (LQR). The results indicate that the RS-HAC surpasses the FC by up to 400\% in control efficiency and is marginally better than the LQR regarding transient time in balancing an inverted pendulum on a cart.
- Published
- 2024
42. Pairs in Nested Steiner Quadruple Systems
- Author
-
Chee, Yeow Meng, Dau, Son Hoang, Etzion, Tuvi, Kiah, Han Mao, and Zhang, Wenqin
- Subjects
Mathematics - Combinatorics - Abstract
Motivated by a repair problem for fractional repetition codes in distributed storage, each block of any Steiner quadruple system (SQS) of order $v$ is partitioned into two pairs. Each pair in such a partition is called a nested design pair and its multiplicity is the number of times it is a pair in this partition. Such a partition of each block is considered as a new block design called a nested Steiner quadruple system. Several related questions on this type of design are considered in this paper: What is the maximum multiplicity of the nested design pair with minimum multiplicity? What is the minimum multiplicity of the nested design pair with maximum multiplicity? Are there nested quadruple systems in which all the nested design pairs have the same multiplicity? Of special interest are nested quadruple systems in which all the $\binom{v}{2}$ pairs are nested design pairs with the same multiplicity. Several constructions of nested quadruple systems are considered and in particular classic constructions of SQS are examined.
- Published
- 2024
43. Systematics of supernumerary nuclear rainbow in inelastic $^{16}$O+$^{12}$C scattering
- Author
-
Phuc, Nguyen Hoang, Phuc, Nguyen Tri Toan, and Cuong, Do Cong
- Subjects
Nuclear Theory - Abstract
We perform a systematic study of inelastic nuclear rainbow scattering for the \oc system to the 2$^+$ (4.44 MeV) state of $^{12}$C at incident energies of 100--608 MeV with the coupled-channels method. The recently generalized nearside-farside decomposition for inelastic scattering was applied in combination with the multichannel deflection function analysis to elucidate the origin of the nuclear rainbow phenomenon and the suppression of the primary and supernumerary Airy minima in the inelastic scattering cross section. The systematic evolution of the Airy minima for the excited 2$^+$ (4.44 MeV) state of $^{12}$C was unambiguously determined. Our work suggests that there is no clear shift in the positions of the first Airy minima and a small shift at low energies for the second and third Airy minima between the inelastic and elastic scattering cross sections. Using the $K$-subamplitudes splitting technique combined with the generalized nearside-farside decomposition and deflection function, the distinct refractive pattern commonly suppressed in the inelastic heavy-ion scattering can be interpreted and provides new insights into the relationship between elastic and inelastic nuclear rainbow scattering.
- Published
- 2024
- Full Text
- View/download PDF
44. Mastering the Craft of Data Synthesis for CodeLLMs
- Author
-
Chen, Meng, Arthur, Philip, Feng, Qianyu, Hoang, Cong Duy Vu, Hong, Yu-Heng, Moghaddam, Mahdi Kazemi, Nezami, Omid, Nguyen, Thien, Tangari, Gioacchino, Vu, Duy, Vu, Thanh, Johnson, Mark, Kenthapadi, Krishnaram, Dharmasiri, Don, Duong, Long, and Li, Yuan-Fang
- Subjects
Computer Science - Software Engineering ,Computer Science - Artificial Intelligence - Abstract
Large language models (LLMs) have shown impressive performance in \emph{code} understanding and generation, making coding tasks a key focus for researchers due to their practical applications and value as a testbed for LLM evaluation. Data synthesis and filtering techniques have been widely adopted and shown to be highly effective in this context. In this paper, we present a focused survey and taxonomy of these techniques, emphasizing recent advancements. We highlight key challenges, explore future research directions, and offer practical guidance for new researchers entering the field.
- Published
- 2024
45. Should exponential integrators be used for advection-dominated problems?
- Author
-
Einkemmer, Lukas, Hoang, Trung-Hau, and Ostermann, Alexander
- Subjects
Mathematics - Numerical Analysis ,65M12, 65L04 - Abstract
In this paper, we consider the application of exponential integrators to problems that are advection dominated, either on the entire or on a subset of the domain. In this context, we compare Leja and Krylov based methods to compute the action of exponential and related matrix functions. We set up a performance model by counting the different operations needed to implement the considered algorithms. This model assumes that the evaluation of the right-hand side is memory bound and allows us to evaluate performance in a hardware independent way. We find that exponential integrators perform comparably to explicit Runge-Kutta schemes for problems that are advection dominated in the entire domain. Moreover, they are able to outperform explicit methods in situations where small parts of the domain are diffusion dominated. We generally observe that Leja based methods outperform Krylov iterations in the problems considered. This is in particular true if computing inner products is expensive.
- Published
- 2024
46. To Err is AI : A Case Study Informing LLM Flaw Reporting Practices
- Author
-
McGregor, Sean, Ettinger, Allyson, Judd, Nick, Albee, Paul, Jiang, Liwei, Rao, Kavel, Smith, Will, Longpre, Shayne, Ghosh, Avijit, Fiorelli, Christopher, Hoang, Michelle, Cattell, Sven, and Dziri, Nouha
- Subjects
Computer Science - Computers and Society ,Computer Science - Machine Learning ,Computer Science - Software Engineering - Abstract
In August of 2024, 495 hackers generated evaluations in an open-ended bug bounty targeting the Open Language Model (OLMo) from The Allen Institute for AI. A vendor panel staffed by representatives of OLMo's safety program adjudicated changes to OLMo's documentation and awarded cash bounties to participants who successfully demonstrated a need for public disclosure clarifying the intent, capacities, and hazards of model deployment. This paper presents a collection of lessons learned, illustrative of flaw reporting best practices intended to reduce the likelihood of incidents and produce safer large language models (LLMs). These include best practices for safety reporting processes, their artifacts, and safety program staffing., Comment: 8 pages, 5 figures
- Published
- 2024
47. Strong solution and approximation of time-dependent radial Dunkl processes with multiplicative noise
- Author
-
Do, Minh-Thang, Ngo, Hoang-Long, and Taguchi, Dai
- Subjects
Mathematics - Probability ,Mathematics - Numerical Analysis ,65C30, 60H35, 91G60, 17B22 - Abstract
We study the strong existence and uniqueness of solutions within a Weyl chamber for a class of time-dependent particle systems driven by multiplicative noise. This class includes well-known processes in physics and mathematical finance. We propose a method to prove the existence of negative moments for the solutions. This result allows us to analyze two numerical schemes for approximating the solutions. The first scheme is a $\theta$-Euler--Maruyama scheme, which ensures that the approximated solution remains within the Weyl chamber. The second scheme is a truncated $\theta$-Euler--Maruyama scheme, which produces values in $\mathbb{R}^{d}$ instead of the Weyl chamber $\mathbb{W}$, offering improved computational efficiency.
- Published
- 2024
48. Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition
- Author
-
Le, Kha Nhat, Nguyen, Hoang-Tuan, Tran, Hung Tien, and Ngo, Thanh Duc
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR), especially where training and testing data reside in different domains. The efficacy of existing UDA approaches tends to degrade when there is a large gap between the source and target domains. To deal with this problem, gradually shifting or progressively learning to shift from domain to domain is the key issue. In this paper, we introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process. The objective is to partition the training data into subsets so that the progressively self-trained model can adapt to gradual changes. We stratify the training data by evaluating the proximity of each data sample to both the source and target domains. We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples. Extensive experiments on benchmark scene-text datasets show that our approach significantly improves the performance of baseline (source-trained) STR models., Comment: [WACV 2025] 15 pages, 12 figures, 5 tables, include supplementary materials, source code: https://github.com/KhaLee2307/StrDA
- Published
- 2024
49. Socially Aware Motion Planning for Service Robots Using LiDAR and RGB-D Camera
- Author
-
Nguyen, Duc Phu, Nguyen, Thanh Long, Tu, Minh Dang, Quach, Cong Hoang, Truong, Xuan Tung, and Phung, Manh Duong
- Subjects
Computer Science - Robotics - Abstract
Service robots that work alongside humans in a shared environment need a navigation system that takes into account not only physical safety but also social norms for mutual cooperation. In this paper, we introduce a motion planning system that includes human states such as positions and velocities and their personal space for social-aware navigation. The system first extracts human positions from the LiDAR and the RGB-D camera. It then uses the Kalman filter to fuse that information for human state estimation. An asymmetric Gaussian function is then employed to model human personal space based on their states. This model is used as the input to the dynamic window approach algorithm to generate trajectories for the robot. Experiments show that the robot is able to navigate alongside humans in a dynamic environment while respecting their physical and psychological comfort., Comment: In Proceedings of 2024, the 7th International Conference on Control, Robotics and Informatics (ICCRI 2024)
- Published
- 2024
50. Model Predictive Control for Optimal Motion Planning of Unmanned Aerial Vehicles
- Author
-
Bui, Duy-Nam, Khuat, Thu Hang, Phung, Manh Duong, Tran, Thuan-Hoang, and Tran, Dong LT
- Subjects
Computer Science - Robotics - Abstract
Motion planning is an essential process for the navigation of unmanned aerial vehicles (UAVs) where they need to adapt to obstacles and different structures of their operating environment to reach the goal. This paper presents an optimal motion planner for UAVs operating in unknown complex environments. The motion planner receives point cloud data from a local range sensor and then converts it into a voxel grid representing the surrounding environment. A local trajectory guiding the UAV to the goal is then generated based on the voxel grid. This trajectory is further optimized using model predictive control (MPC) to enhance the safety, speed, and smoothness of UAV operation. The optimization is carried out via the definition of several cost functions and constraints, taking into account the UAV's dynamics and requirements. A number of simulations and comparisons with a state-of-the-art method have been conducted in a complex environment with many obstacles to evaluate the performance of our method. The results show that our method provides not only shorter and smoother trajectories but also faster and more stable speed profiles. It is also energy efficient making it suitable for various UAV applications., Comment: In proceedings of 2024, the 7th International Conference on Control, Robotics and Informatics (ICCRI 2024)
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.