1. Adult Zebrafish Model for Screening Drug-Induced Kidney Injury
- Author
-
Tamio Fukushima, Yuki Kato, Motonobu Ueno, Kyohei Nishimura, Yutaka Tonomura, and Hiroyuki Hanafusa
- Subjects
0301 basic medicine ,Microarray ,Pharmacology ,Toxicology ,Kidney ,Nephrotoxicity ,Pathogenesis ,03 medical and health sciences ,0302 clinical medicine ,In vivo ,Toxicity Tests ,medicine ,Animals ,Zebrafish ,Early Growth Response Protein 1 ,Activating Transcription Factor 3 ,biology ,business.industry ,Gene Expression Profiling ,Zebrafish Proteins ,biology.organism_classification ,030104 developmental biology ,medicine.anatomical_structure ,Gene Expression Regulation ,030220 oncology & carcinogenesis ,Toxicity ,Feasibility Studies ,Gentamicin ,Kidney Diseases ,Cisplatin ,Gentamicins ,business ,Transcriptome ,Proto-Oncogene Proteins c-fos ,medicine.drug - Abstract
Drug-induced kidney injury is a serious safety issue in drug development. In this study, we evaluated the usefulness of adult zebrafish as a small in vivo system for detecting drug-induced kidney injury. We first investigated the effects of typical nephrotoxicants, gentamicin and doxorubicin, on adult zebrafish. We found that gentamicin induced renal tubular necrosis with increased lysosome and myeloid bodies, and doxorubicin caused foot process fusion of glomerular podocytes. These findings were similar to those seen in mammals, suggesting a common pathogenesis. Second, to further evaluate the performance of the model in detecting drug-induced kidney injury, adult zebrafish were treated with 28 nephrotoxicants or 14 nonnephrotoxicants for up to 4 days, euthanized 24 h after the final treatment, and examined histopathologically. Sixteen of the 28 nephrotoxicants and none of the 14 nonnephrotoxicants caused drug-induced kidney injury in zebrafish (sensitivity, 57%; specificity, 100%; positive predictive value, 100%; negative predictive value, 54%). Finally, we explored genomic biomarker candidates using kidneys isolated from gentamicin- and cisplatin-treated zebrafish using microarray analysis and identified 3 candidate genes, egr1, atf3, and fos based on increased expression levels and biological implications. The expression of these genes was upregulated dose dependently in cisplatin-treated groups and was > 25-fold higher in gentamicin-treated than in the control group. In conclusion, these results suggest that the adult zebrafish has (1) similar nephrotoxic response to those of mammals, (2) considerable feasibility as an experimental model for toxicity studies, and (3) applicability to pathological examination and genomic biomarker evaluation in drug-induced kidney injury.
- Published
- 2020