69 results on '"Hiroaki Menjo"'
Search Results
2. Uncertainty in mean $X_{\rm max}$ from diffractive dissociation estimated using measurements of accelerator experiments
- Author
-
Ken Ohashi, Hiroaki Menjo, Takashi Sako, Yoshitaka Itow
- Subjects
Physics ,QC1-999 - Abstract
Mass composition is important for understanding the origin of ultra-high-energy cosmic rays. However, interpretation of mass composition from air shower experiments is challenging, owing to significant uncertainty in hadronic interaction models adopted in air shower simulation. A particular source of uncertainty is diffractive dissociation, as its measurements in accelerator experiments demonstrated significant systematic uncertainty. In this research, we estimate the uncertainty in $\langle X_{\rm max}\rangle$ from the uncertainty of the measurement of diffractive dissociation by the ALICE experiment. The maximum uncertainty size of the entire air shower was estimated to be $^{+4.0}_{-5.6} \mathrm{g/cm^2}$ for air showers induced by $10^{17}$ eV proton, which is not negligible in the uncertainty of $\langle X_{\rm max}\rangle$ predictions.
- Published
- 2023
- Full Text
- View/download PDF
3. Supernova model discrimination with hyper-kamiokande
- Author
-
Y. Nagao, H. Tanaka, A. Minamino, B. Navarro-Garcia, Z. Xie, L. Nascimento Machado, J. Lagoda, M. Shinoki, S. Cuen-Rochin, Arman Esmaili, F. Ballester, S. Parsa, N. McCauley, Jung-Hyun Kim, K. Frankiewicz, L. L. Kormos, Masaki Ishitsuka, M. Malek, V. Valentino, N. Kazarian, T. Wachala, E. Drakopoulou, G. Grella, V. Paolone, L. F. Thompson, A. K. Tomatani-Sánchez, A. Blanchet, R. A. Wendell, John Ellis, J. Y. Kim, N. W. Prouse, O. V. Mineev, M. R. Vagins, T. Boschi, T. Lindner, J. González-Nuevo, Hiroshi Ito, N. Skrobova, M. La Commara, L. Gialanella, F. Orozco-Luna, T. Kumita, A. Garfagnini, S. H. Jeon, A. Dergacheva, Hiroaki Menjo, A. T. Suzuki, K. Okamoto, C. E. R. Naseby, J. F. Martin, T. Iijima, M. Mezzetto, G. Ricciardi, J. R. Wilson, P. Gumplinger, Y. Takemoto, G. Galinski, K. Zaremba, T. Nakadaira, D. Vivolo, A. Carroll, C. Vilela, A. Blondel, A. Rychter, T. A. Doyle, C. Garde, G. De Rosa, A. Oshlianskyi, Hiroyuki Sekiya, R. Matsumoto, G. Pastuszak, P. J. Rajda, F. Monrabal, Yoichi Asaoka, G. Díaz López, K. L. Stankevich, C. D. Shin, Y. Fukuda, Yuto Ashida, Michal Malinský, T. Suganuma, B. Radics, Kohta Murase, Marco Grassi, P. Mehta, F. Cafagna, Ahmed Ali, L. Koerich, Vincenzo Berardi, Etam Noah, F. J. P. Soler, Alan Cosimo Ruggeri, M. Kekic, G. Vasseur, S. Wronka, M. Thiesse, B. Ferrazzi, K. Iwamoto, Yu. Kudenko, Atsushi Takeda, Kendall Mahn, David Hadley, B. Roskovec, M. Bergevin, A. Korzenev, J.J. Gómez-Cadenas, M. Batkiewicz-Kwasniak, M. Tzanov, M. Ikeda, Federico Sanchez, W. Obrębski, H. S. Jo, Y. Takeuchi, Piotr Kalaczyński, S. Chakraborty, J. C. Nugent, S. King, P. Paganini, M. Miura, F. Ameli, D. N. Yeum, C. J. Metelko, Akito Araya, T. Kajita, M. Tanaka, I. T. Lim, L. Mellet, S. Y. Kim, S. Bolognesi, A. Bravar, J. S. Jang, D. Svirida, A. Fiorentini, J. Renner, M. Chabera, L. O'Sullivan, V. Herrero, F. Iacob, K. Nakamura, Ko Okumura, Lukasz Stawarz, N. Ogawa, Laura Bonavera, Y. Maekawa, Takatomi Yano, Ll. Marti, H. J. Rose, S. El Hedri, L. Maret, G. Zarnecki, L. Bernard, S. H. Seo, H. Nakamura, H. Ozaki, A. P. Kryukov, A. Popov, Hisakazu Minakata, M. Buizza Avanzini, P. Sarmah, K. Martens, Sergio Luis Suárez Gómez, Hiroaki Aihara, V. Lezaun, G. A. Cowan, C. Riccio, S. Garode, R. Akutsu, M. Lamers James, T. Nicholls, I. Alekseev, K. Kowalik, J. Kasperek, T. Zakrzewski, S. B. Kim, T. Kutter, Evan O'Connor, B. Jamieson, F. Nova, M. Barbi, Xianguo Lu, Y. Sonoda, M. Friend, Teppei Katori, L. H. V. Anthony, A. Shaikhiev, C. J. Densham, V. Gousy-Leblanc, I. Bandac, J. H. Choi, S. Sano, A. K. Ichikawa, Magda Cicerchia, S. Valder, S. Roth, J. Kameda, M. Zito, A. Vijayvargi, S. Nakai, Y. Kotsar, K. M. Tsui, K. Hoshina, K. K. Joo, C. Pastore, T. Marchi, K. Niewczas, K. Nakayoshi, G. Fiorillo, C. McGrew, P. F. Loverre, S. Playfer, G.D. Barr, L. Labarga, T. Kobayashi, E. S. Pinzon Guerra, André Rubbia, D. Karlen, Th. A. Mueller, L. Koch, F. J. Mora, M. M. Khabibullin, Hidekazu Kakuno, Yoshitaka Itow, H. K. Tanaka, P. Adrich, Jeong-Eun Lee, S. Samani, M. G. Catanesi, M. Yu, M. J. Wilking, Robert Svoboda, P. Mijakowski, N. Kolev, Yu. Onishchuk, A. Kato, J. M. Poutissou, C. Bronner, Yutaka Nakajima, B. Richards, C. Ruggles, M. Needham, P. Jonsson, Y. Hayato, S. Mine, A. Konaka, L. Munteanu, Kunio Inoue, O. Drapier, Kenneth Long, M. McCarthy, T. Kinoshita, G. Tortone, Yuuki Nakano, T. Feusels, N. Izumi, Reetanjali Moharana, T. Dealtry, S. Hassani, G. Pronost, K. Sakashita, J. G. Learned, H. M. O'Keeffe, Shintaro Ito, E. Rondio, Toru Ogitsu, D. A. Patel, Tatiana Ovsiannikova, M. Guigue, Yusuke Koshio, T. Matsubara, S. M. Stellacci, R. J. Wilkes, G. Santucci, S. Y. Suzuki, S. D. Rountree, K. Zietara, A. A. Quiroga, M. Jakkapu, A. Boiano, L. Berns, M. O. Wascko, M. M. Vyalkov, K. Porwit, M. Taani, A. Evangelisti, I. Sashima, Michal Dziewiecki, J. Feng, Y. Seiya, M. Yonenaga, B. Spisso, B. W. Pointon, C. M. Mollo, N. Booth, S. V. Cao, N. Ospina, A. J. Finch, V. Takhistov, E. Radicioni, P. Przewlocki, S. Nakayama, S. Yen, T. Sekiguchi, Yudai Suwa, J. M. Calvo-Mozota, S. Zsoldos, C. Checchia, M. Posiadala-Zezula, E. O'Sullivan, Janusz Marzec, F. Retiere, Jan T. Sobczyk, P. Migliozzi, S. Borjabad, I. Di Palma, John Hill, K. A. Kouzakov, D. L. Wark, L. Cook, D. Sgalaberna, E. W. Miller, M. Lamoureux, M. Y. Pac, S. Russo, S. L. Cartwright, Yasunari Suzuki, D. Bose, B. Zaldivar, D. Martin, Dongsu Ryu, Z. Shan, S. Miki, M. Jiang, J. Kisiel, N. Yershov, M. Matusiak, C. Pea-Garay, K. Sato, Jesús Daniel Santos, Y. Yamaguchi, D. Bravo-Berguo, Chad Finley, T. Tashiro, Lawrence D. Brown, A. Gorin, Hiromasa Tanaka, M. Ziembicki, T. Vladisavljevic, J. Zalipska, J. Insler, C. Yanagisawa, Abinash Medhi, L. Kravchuk, W. Idrissi Ibnsalih, Hirokazu Ishino, J. Bian, K. Magar, S. Cebrian, Philippe Mermod, R. Gornea, Juan Pedro Ochoa-Ricoux, Sergei Fedotov, S. Izumiyama, C. Bozza, R. Esteve, Seiko Hirota, T. Tsukamoto, K. Skwarczynski, E. De la Fuente, T. Kikawa, M. Gonin, J. Xia, Intae Yu, Gareth J. Barker, A. Marinelli, E. Kearns, L. Lavitola, Michal Ostrowski, N. Deshmukh, Y. Kataoka, F. d. M. Blaszczyk, Carsten Rott, C. Mariani, T. Ishida, Roberto Spina, J. W. Seo, Masashi Yokoyama, F. Gramegna, K. Hultqvist, G. Collazuol, P. Spradlin, Gus Sinnis, A. Takenaka, T. Xin, M. Bellato, Yuki Fujii, Mark Scott, J. A. Hernando-Morata, P. Ferrario, A. Buchowicz, S. J. Jenkins, J. Walker, J. Toledo, Pablo Fernandez, Sandhya Choubey, S. Emery, A. Mefodiev, R.P. Kurjata, M. Mongelli, J. Dumarchez, Tsuyoshi Nakaya, M. Antonova, M. Danilov, M. Feely, A. Holin, Ara Ioannisian, B. A. Popov, K Stopa, W. G. S. Vinning, M. L. Sánchez, Masato Shiozawa, L. Ludovici, J. Gao, S. Bhadra, Koji Ishidoshiro, Hiroshi Nunokawa, V. Aushev, M. Hartz, I. Shimizu, C. S. Moon, M. B. Smy, S. Matsuno, I. Anghel, J. Migenda, T. Mondal, F. Di Lodovico, M. Tada, D. J. Payne, M. Kuze, N. C. Hastings, P. Di Meo, Y. Nishimura, M. Inomoto, L. Magaletti, C. Giganti, A. Klekotko, Patrick Dunne, J. Yoo, M. C. Sanchez, A. N. Khotjantsev, Kyujin Kwak, Lars Eklund, M. Lawe, A. Mitra, H. W. Sobel, Jürgen Pozimski, Yasuhiro Makida, A. Bubak, Jaroslaw Pasternak, B. Quilain, R. Leitner, Marco Laveder, J. P. Coleman, N. F. Calabria, H. I. Jang, S. B. Boyd, Moon Moon Devi, M. Fitton, M. Harada, Artur F. Izmaylov, J. McElwee, Shunsaku Horiuchi, P. de Perio, K. Nakagiri, Y. Kano, M. Rescigno, S. Moriyama, Masayuki Nakahata, C. Pidcott, Y. Uchida, V. Palladino, A. Longhin, A. Shaykina, Michelangelo Pari, Akimichi Taketa, Yuichi Oyama, S. Suvorov, R. P. Litchfield, D. H. Moon, Katsuki Hiraide, M. Pavin, M. Koga, R. B. Vogelaar, Enrique Fernandez-Martinez, B. L. Hartfiel, Koji Yamamoto, K. Ohta, K. Abe, Alexander Studenikin, E. Mazzucato, Elisa Bernardini, Abe, K., Adrich, P., Aihara, H., Akutsu, R., Alekseev, I., Ali, A., Ameli, F., Anghel, I., Anthony, L. H. V., Antonova, M., Araya, A., Asaoka, Y., Ashida, Y., Aushev, V., Ballester, F., Bandac, I., Barbi, M., Barker, G. J., Barr, G., Batkiewicz-Kwasniak, M., Bellato, M., Berardi, V., Bergevin, M., Bernard, L., Bernardini, E., Berns, L., Bhadra, S., Bian, J., Blanchet, A., Blaszczyk, F. D. M., Blondel, A., Boiano, A., Bolognesi, S., Bonavera, L., Booth, N., Borjabad, S., Boschi, T., Bose, D., Boyd, S. B., Bozza, C., Bravar, A., Bravo-Berguo, D., Bronner, C., Brown, L., Bubak, A., Buchowicz, A., Buizza Avanzini, M., Cafagna, F. S., Calabria, N. F., Calvo-Mozota, J. M., Cao, S., Cartwright, S. L., Carroll, A., Catanesi, M. G., Cebrian, S., Chabera, M., Chakraborty, S., Checchia, C., Choi, J. H., Choubey, S., Cicerchia, M., Coleman, J., Collazuol, G., Cook, L., Cowan, G., Cuen-Rochin, S., Danilov, M., Diaz Lopez, G., De La Fuente, E., De Perio, P., De Rosa, G., Dealtry, T., Densham, C. J., Dergacheva, A., Deshmukh, N., Devi, M. M., Di Lodovico, F., Di Meo, P., Di Palma, I., Doyle, T. A., Drakopoulou, E., Drapier, O., Dumarchez, J., Dunne, P., Dziewiecki, M., Eklund, L., El Hedri, S., Ellis, J., Emery, S., Esmaili, A., Esteve, R., Evangelisti, A., Feely, M., Fedotov, S., Feng, J., Fernandez, P., Fernandez-Martinez, E., Ferrario, P., Ferrazzi, B., Feusels, T., Finch, A., Finley, C., Fiorentini, A., Fiorillo, G., Fitton, M., Frankiewicz, K., Friend, M., Fujii, Y., Fukuda, Y., Galinski, G., Gao, J., Garde, C., Garfagnini, A., Garode, S., Gialanella, L., Giganti, C., Gomez-Cadenas, J. J., Gonin, M., Gonzalez-Nuevo, J., Gorin, A., Gornea, R., Gousy-Leblanc, V., Gramegna, F., Grassi, M., Grella, G., Guigue, M., Gumplinger, P., Hadley, D. R., Harada, M., Hartfiel, B., Hartz, M., Hassani, S., Hastings, N. C., Hayato, Y., Hernando-Morata, J. A., Herrero, V., Hill, J., Hiraide, K., Hirota, S., Holin, A., Horiuchi, S., Hoshina, K., Hultqvist, K., Iacob, F., Ichikawa, A. K., Idrissi Ibnsalih, W., Iijima, T., Ikeda, M., Inomoto, M., Inoue, K., Insler, J., Ioannisian, A., Ishida, T., Ishidoshiro, K., Ishino, H., Ishitsuka, M., Ito, H., Ito, S., Itow, Y., Iwamoto, K., Izmaylov, A., Izumi, N., Izumiyama, S., Jakkapu, M., Jamieson, B., Jang, H. I., Jang, J. S., Jenkins, S. J., Jeon, S. H., Jiang, M., Jo, H. S., Jonsson, P., Joo, K. K., Kajita, T., Kakuno, H., Kameda, J., Kano, Y., Kalaczynski, P., Karlen, D., Kasperek, J., Kataoka, Y., Kato, A., Katori, T., Kazarian, N., Kearns, E., Khabibullin, M., Khotjantsev, A., Kikawa, T., Kekic, M., Kim, J. H., Kim, J. Y., Kim, S. B., Kim, S. Y., King, S., Kinoshita, T., Kisiel, J., Klekotko, A., Kobayashi, T., Koch, L., Koga, M., Koerich, L., Kolev, N., Konaka, A., Kormos, L. L., Koshio, Y., Korzenev, A., Kotsar, Y., Kouzakov, K. A., Kowalik, K. L., Kravchuk, L., Kryukov, A. P., Kudenko, Y., Kumita, T., Kurjata, R., Kutter, T., Kuze, M., Kwak, K., La Commara, M., Labarga, L., Lagoda, J., Lamers James, M., Lamoureux, M., Laveder, M., Lavitola, L., Lawe, M., Learned, J. G., Lee, J., Leitner, R., Lezaun, V., Lim, I. T., Lindner, T., Litchfield, R. P., Long, K. R., Longhin, A., Loverre, P., Lu, X., Ludovici, L., Maekawa, Y., Magaletti, L., Magar, K., Mahn, K., Makida, Y., Malek, M., Malinsky, M., Marchi, T., Maret, L., Mariani, C., Marinelli, A., Martens, K., Marti, L., Martin, J. F., Martin, D., Marzec, J., Matsubara, T., Matsumoto, R., Matsuno, S., Matusiak, M., Mazzucato, E., Mccarthy, M., Mccauley, N., Mcelwee, J., Mcgrew, C., Mefodiev, A., Medhi, A., Mehta, P., Mellet, L., Menjo, H., Mermod, P., Metelko, C., Mezzetto, M., Migenda, J., Migliozzi, P., Mijakowski, P., Miki, S., Miller, E. W., Minakata, H., Minamino, A., Mine, S., Mineev, O., Mitra, A., Miura, M., Moharana, R., Mollo, C. M., Mondal, T., Mongelli, M., Monrabal, F., Moon, D. H., Moon, C. S., Mora, F. J., Moriyama, S., Mueller, T. A., Munteanu, L., Murase, K., Nagao, Y., Nakadaira, T., Nakagiri, K., Nakahata, M., Nakai, S., Nakajima, Y., Nakamura, K., Nakamura, K. I., Nakamura, H., Nakano, Y., Nakaya, T., Nakayama, S., Nakayoshi, K., Nascimento Machado, L., Naseby, C. E. R., Navarro-Garcia, B., Needham, M., Nicholls, T., Niewczas, K., Nishimura, Y., Noah, E., Nova, F., Nugent, J. C., Nunokawa, H., Obrebski, W., Ochoa-Ricoux, J. P., O'Connor, E., Ogawa, N., Ogitsu, T., Ohta, K., Okamoto, K., O'Keeffe, H. M., Okumura, K., Onishchuk, Y., Orozco-Luna, F., Oshlianskyi, A., Ospina, N., Ostrowski, M., O'Sullivan, E., O'Sullivan, L., Ovsiannikova, T., Oyama, Y., Ozaki, H., Pac, M. Y., Paganini, P., Palladino, V., Paolone, V., Pari, M., Parsa, S., Pasternak, J., Pastore, C., Pastuszak, G., Patel, D. A., Pavin, M., Payne, D., Pea-Garay, C., Pidcott, C., Pinzon Guerra, E., Playfer, S., Pointon, B. W., Popov, A., Popov, B., Porwit, K., Posiadala-Zezula, M., Poutissou, J. -M., Pozimski, J., Pronost, G., Prouse, N. W., Przewlocki, P., Quilain, B., Quiroga, A. A., Radicioni, E., Radics, B., Rajda, P. J., Renner, J., Rescigno, M., Retiere, F., Ricciardi, G., Riccio, C., Richards, B., Rondio, E., Rose, H. J., Roskovec, B., Roth, S., Rott, C., Rountree, S. D., Rubbia, A., Ruggeri, A. C., Ruggles, C., Russo, S., Rychter, A., Ryu, D., Sakashita, K., Samani, S., Sanchez, F., Sanchez, M. L., Sanchez, M. C., Sano, S., Santos, J. D., Santucci, G., Sarmah, P., Sashima, I., Sato, K., Scott, M., Seiya, Y., Sekiguchi, T., Sekiya, H., Seo, J. W., Seo, S. H., Sgalaberna, D., Shaikhiev, A., Shan, Z., Shaykina, A., Shimizu, I., Shin, C. D., Shinoki, M., Shiozawa, M., Sinnis, G., Skrobova, N., Skwarczynski, K., Smy, M. B., Sobczyk, J., Sobel, H. W., Soler, F. J. P., Sonoda, Y., Spina, R., Spisso, B., Spradlin, P., Stankevich, K. L., Stawarz, L., Stellacci, S. M., Stopa, K., Studenikin, A. I., Suarez Gomez, S. L., Suganuma, T., Suvorov, S., Suwa, Y., Suzuki, A. T., Suzuki, S. Y., Suzuki, Y., Svirida, D., Svoboda, R., Taani, M., Tada, M., Takeda, A., Takemoto, Y., Takenaka, A., Taketa, A., Takeuchi, Y., Takhistov, V., Tanaka, H., Tanaka, H. A., Tanaka, H. I., Tanaka, M., Tashiro, T., Thiesse, M., Thompson, L. F., Toledo, J., Tomatani-Sanchez, A. K., Tortone, G., Tsui, K. M., Tsukamoto, T., Tzanov, M., Uchida, Y., Vagins, M. R., Valder, S., Valentino, V., Vasseur, G., Vijayvargi, A., Vilela, C., Vinning, W. G. S., Vivolo, D., Vladisavljevic, T., Vogelaar, R. B., Vyalkov, M. M., Wachala, T., Walker, J., Wark, D., Wascko, M. O., Wendell, R. A., Wilkes, R. J., Wilking, M. J., Wilson, J. R., Wronka, S., Xia, J., Xie, Z., Xin, T., Yamaguchi, Y., Yamamoto, K., Yanagisawa, C., Yano, T., Yen, S., Yershov, N., Yeum, D. N., Yokoyama, M., Yonenaga, M., Yoo, J., Yu, I., Yu, M., Zakrzewski, T., Zaldivar, B., Zalipska, J., Zaremba, K., Zarnecki, G., Ziembicki, M., Zietara, K., Zito, M., Zsoldos, S., Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Hyper-Kamiokande, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación ,KAMIOKANDE ,Astrophysics ,01 natural sciences ,neutrino: flux ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,neutrino ,accretion ,black hole ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Core-collapse supernovae ,neutron star ,Monte Carlo ,physics.ins-det ,010303 astronomy & astrophysics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Instrumentation and Detectors (physics.ins-det) ,16. Peace & justice ,Supernova ,neutrino: detector ,07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos ,supernova ,neutrino astronomy ,neutrino physics ,Neutrino detector ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,supernova: collapse ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Hyper-Kamiokande ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,High energy physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics ,hep-ex ,010308 nuclear & particles physics ,supernova: model ,Astronomy and Astrophysics ,Galaxy ,Black hole ,Neutron star ,Space and Planetary Science ,neutrino: burst ,galaxy ,Neutrino astronomy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,astro-ph.IM - Abstract
Autorzy: Abe K., Adrich P., Aihara H., Akutsu, R., Alekseev I., Ali A. , Ameli F., Anghel I., Anthony L. H. V., Antonova M. , Araya A., Asaoka Y., Ashida Y., Aushev V., Ballester F., Bandac I., Barbi M., Barker G. J., Barr G., Batkiewicz-Kwasniak M., Bellato M., Berardi V., Bergevin M., Bernard L., Bernardini E., Berns L., Bhadra S., Bian J., Blanchet A., Blaszczyk F. d. M., Blonde A., Boiano A., Bolognesi S., Bonavera L., Booth N., Borjabad S., Boschi, T., Bose D., Boyd S . B., Bozza C., Bravar A., Bravo-Berguño D., Bronner C., Brown L., Bubak Arkadiusz, Buchowicz A., Buizza Avanzini M., Cafagna F. S., Calabria N. F., Calvo-Mozota J. M., Cao S., Cartwright S.L., Carroll A., Catanesi M. G., Cebriàn, S., Chabera M., Chakraborty, S., Checchia C., Choi J.H., Choubey S., Cicerchia M., Coleman J., Collazuol G., Cook L., Cowan G., Cuen-Rochin, S., Danilov M., Díaz López G., De la Fuente E., de Perio P., De Rosa G., Dealtry T., Densham C. J., Dergacheva A., Deshmukh N., Devi M. M., Di Lodovico F., Di Meo, P., Di Palma I., Doyle T. A., Drakopoulou E., Drapier O., Dumarchez J., Dunne P., Dziewiecki M., Eklund L., El Hedri S., Ellis J., Emery S., Esmaili A., Esteve R., Evangelisti A., Feely M., Fedotov S., Feng J., Fernandez P., Fernández-Martinez E., Ferrario P., Ferrazzi,B., Feusels T., Finch A., Finley C., Fiorentini A., Fiorillo G., Fitton M., Frankiewicz K., Friend M., Fujii Y., Fukuda Y., Galinski G., Gao J., Garde C., Garfagnini A., Garode S., Gialanella L., Giganti C., Gomez-Cadenas J.J., Gonin M., González-Nuevo J., Gorin A., Gornea R., Gousy-Leblanc V. Gramegna F. Grassi M. Grella G. Guigue M. Gumplinger P. Hadley D.R. Harada M., Hartfiel B., Hartz M., Hassani S., Hastings N.C., Hayato Y., Hernando-Morata J.A., Herrero V., Hill J., Hiraide K., Hirota S., Holin A., Horiuchi S., Hoshina K., Hultqvist K., Iacob F., Ichikawa A.K., Idrissi Ibnsalih W., Iijima T., Ikeda M., Inomoto M., Inoue K., Insler J., Ioannisian A., Ishida T., Ishidoshiro K., Ishino H., Ishitsuka M., Ito H., Ito S., Itow Y., Iwamoto K., Izmaylov A., Izumi N., Izumiyama S., Jakkapu M., Jamieson B., Jang H.I., Jang J.S., Jenkins S.J., Jeon S.H., Jiang M., Jo H.S., Jonsson P., Joo K.K., Kajita T., Kakuno H., Kameda J., Kano Y., Kalaczynski P., Karlen D., Kasperek J., Kataoka Y., Kato A., Katori T., Kazarian N., Kearns E., Khabibullin M., Khotjantsev A., Kikawa T., Kekic M., Kim J.H., Kim J.Y., Kim S.B., Kim S.Y., King S., Kinoshita T., Kisiel Jan, Klekotko A., Kobayashi T., Koch L., Koga M., Koerich L., Kolev N., Konaka A., Kormos L.L., Koshio Y., Korzenev A., Kotsar Y., Kouzakov K.A., Kowalik K.L., Kravchuk L., Kryukov A.P., Kudenko Y., Kumita T., Kurjata R., Kutter T., Kuze M., Kwak K., La Commara M., Labarga L., Lagoda J., Lamers James J., Lamoureux M., Laveder M., Lavitola L., Lawe M., Learned J.G., Lee J., Leitner R., Lezaun V., Lim I.T., Lindner T., Litchfield R.P., Long K.R., Longhin A., Loverre P., Lu X., Ludovici L., Maekawa Y., Magaletti L., Magar K., Mahn K., Makida Y., Malek M., Malinský M., Marchi T., Maret L., Mariani C., Marinelli A., Martens K., Marti L., Martin J.F. Martin D., Marzec J., Matsubara T., Matsumoto R., Matsuno S., Matusiak M., Mazzucato E., McCarthy M., McCauley N., McElwee J., McGrew C., Mefodiev A., Medhi A., Mehta P., Mellet L., Menjo H., Mermod P., Metelko C., Mezzetto M., Migenda J., Migliozzi P., Mijakowski P., Miki S., Miller E.W., Minakata H., Minamino A., Mine S., Mineev O., Mitra A., Miura M., Moharana R., Mollo C.M., Mondal T., Mongelli M., Monrabal F., Moon D.H., Moon C.S., Mora F.J., Moriyama S., Mueller Th.A., Munteanu L., Murase K., Nagao Y., Nakadaira T., Nakagiri K., Nakahata M., Nakai S., Nakajima Y., Nakamura K., Nakamura KI., Nakamura H., Nakano Y., Nakaya T., Nakayama S., Nakayoshi K., Nascimento Machado L., Naseby C.E.R., Navarro-Garcia B., Needham M., Nicholls T., Niewczas K., Nishimura Y., Noah E., Nova F., Nugent J.C., Nunokawa H., Obrebski W., Ochoa-Ricoux J.P., O’Connor E., Ogawa N., Ogitsu T., Ohta K., Okamoto K., O’Keeffe H.M., Okumura K., Onishchuk Y., Orozco-Luna F., Oshlianskyi A., Ospina N., Ostrowski M., O’Sullivan E., O’Sullivan L., Ovsiannikova T., Oyama Y., Ozaki H., Pac M.Y., Paganini P., Palladino V., Paolone V., Pari M., Parsa S., Pasternak J., Pastore C., Pastuszak G., Patel D.A., Pavin M., Payne D., Peña-Garay C., Pidcott C., Pinzon Guerra E., Playfer S., Pointon B.W., Popov A., Popov B., Porwit Kamil, Posiadala-Zezula M., Poutissou J.M., Pozimski J., Pronost G., Prouse N.W., Przewlocki P., Quilain B., Quiroga A.A., Radicioni E., Radics B., Rajda P.J., Renner J., Rescigno M., Retiere F., Ricciardi G., Riccio C., Richards B., Rondio E., Rose H.J., Roskovec B., Roth S., Rott C., Rountree S.D., Rubbia A., Ruggeri A.C., Ruggles C., Russo S., Rychter A., Ryu D., Sakashita K., Samani S., Sánchez F., Sánchez M.L., Sanchez M.C., Sano S., Santos J.D., Santucci G., Sarmah P., Sashima I., Sato K., Scott M., Seiya Y., Sekiguchi T., Sekiya H., Seo J.W., Seo S.H., Sgalaberna D., Shaikhiev A., Shan Z., Shaykina A., Shimizu I., Shin C.D., Shinoki M., Shiozawa M., Sinnis G., Skrobova N., Skwarczynski K., Smy M.B., Sobczyk J., Sobel H.W., Soler F. J. P., Sonoda Y., Spina R., Spisso B., Spradlin B., Stankevich K.L., Stawarz L., Stellacci S.M., Stopa K., Studenikin A.I., Suárez Gómez S.L., Suganuma T., Suvorov S., Suwa Y., Suzuki A.T., Suzuki S.Y., Suzuki Y., Svirida D., Svoboda R., Taani M., Tada M., Takeda A., Takemoto Y., Takenaka A., Taketa A., Takeuchi Y., Takhistov V., Tanaka H., Tanaka H.A., Tanaka H.I., Tanaka M., Tashiro T., Thiesse M., Thompson L.F., Toledo J., Tomatani-Sánchez A.K., Tortone G., Tsui K.M., Tsukamoto T., Tzanov M., Uchida Y., Vagins M.R., Valder S., Valentino V., Vasseur G., Vijayvargi A., Vilela C., Vinning W. G. S., Vivolo D., Vladisavljevic T., Vogelaar R.B., Vyalkov M.M., Wachala T., Walker J., Wark D., Wascko M.O., Wendell R.A., Wilkes R.J., Wilking M.J., Wilson M.R., Wronka S., Xia J., Xie Z., Xin T., Yamaguchi Y., Yamamoto K., Yanagisawa C., Yano T., Yen S., Yershov N., Yeum D.N., Yokoyama M., Yonenaga M., Yoo J., Yu I., Yu M., Zakrzewski T., Zaldivar B., Zalipska J., Zaremba K., Zarnecki G., Ziembicki M., Zietara K., Zito M., Zsoldos S., Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokandeʼs response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations toward a precise reproduction of the explosion mechanism observed in nature.
- Published
- 2022
- Full Text
- View/download PDF
4. Status of the LHCf experiment
- Author
-
Ken Ohashi, Oscar Adriani, Eugenio Berti, Pietro Betti, Lorenzo Bonechi, Massimo Bongi, Raffaello D’Alessandro, Sebastiano Detti, Maurice Haguenauer, Yoshitaka Itow, Katsuaki Kasahara, Yuga Kitagami, Moe Kondo, Yutaka Matsubara, Hiroaki Menjo, Yasushi Muraki, Paolo Papini, Giuseppe Piparo, Sergio Ricciarini, Takashi Sako, Nobuyuki Sakurai, Monica Scaringella, Yuki Shimizu, Tadashi Tamura, Alessio Tiberio, Shoji Torii, Alessia Tricomi, William C. Turner, and Kenji Yoshida
- Subjects
General Medicine - Abstract
A precise understanding of hadronic interactions is essential to interpreting the mass composition of ultra-high energy cosmic rays from the results of air shower experiments. The Large Hadron Collier forward (LHCf) experiment aims to measure forward neutral particles for validation of hadronic interaction models adopted in air shower simulations. We already published the production cross sections of forward photons and neutrons for proton-proton collisions at √s=13 TeV. Recently, we showed a preliminary result of the energy spectrum of forward η mesons for proton-proton collisions at √s=13 TeV. Moreover, in September 2022, we had another data-taking for proton-proton collisions at √s=13.6 TeV. In data taking, we planned to obtain a number of π0 and η candidates ten times larger for precise measurements and to perform the joint operation with ATLAS Roman pots and zero-degree calorimeters. Thanks to the joint operation with the ATLAS Roman pots, we can measure diffractive mass and neutral particles from diffractive dissociation simultaneously. Furthermore, energy resolution for neutrons is expected to be improved from 40% to 20% by combining the LHCf and the ATLAS zero-degree calorimeters. In this work, we report the status and prospects of the LHCf experiment.
- Published
- 2023
- Full Text
- View/download PDF
5. Search for neutrinos in coincidence with gravitational wave events from the LIGO–Virgo O3a observing run with the Super-Kamiokande detector
- Author
-
Y. Kanemura, A. Giampaolo, W. R. Kropp, Y. Hayato, A. A. Sztuc, P. Mehta, Pablo Fernandez, T. Hasegawa, F. Iacob, D. Bravo-Berguño, Y. Kuno, T. Towstego, O. Drapier, H. Ito, Sei-ichiro Watanabe, G.D. Barr, J. Bian, N. Piplani, S. Miki, S. V. Cao, M. R. Vagins, K. Martens, Y. Takemoto, L. F. Thompson, S. Imaizumi, A. Coffani, O. Stone, J. S. Jang, M. Taani, Seiko Hirota, T. Kikawa, M. Gonin, J. Xia, Masahiro Kuze, A. Goldsack, S. Han, M. J. Wilking, R. A. Wendell, M. B. Smy, Junjie Jiang, F. Nova, E. Radicioni, Kimihiro Okumura, B. Zaldivar, J. Y. Kim, S. Izumiyama, A. Orii, S. Mine, L. Cook, J. Migenda, John Hill, A. T. Suzuki, K. Okamoto, T. Horai, R. Sasaki, J. F. Martin, J. Kameda, B. Bodur, Yuichi Oyama, T. Nakadaira, J. McElwee, J. L. Stone, I. T. Lim, F. Di Lodovico, D. L. Wark, Vincenzo Berardi, Y. Maekawa, S. El Hedri, T. Sekiguchi, L. Ludovici, Th. A. Mueller, N. Ospina, K. Ohta, G. De Rosa, Hiromasa Tanaka, V. Takhistov, Hiroaki Menjo, C. Simpson, J. G. Learned, K. M. Tsui, P. Mijakowski, J. Y. Yang, K. Abe, J. L. Raaf, M. Tsukada, M. Thiesse, K. Iwamoto, H. K. Tanaka, Yasunari Suzuki, S. Samani, G. D. Megias, A. Konaka, M. G. Catanesi, N. J. Griskevich, Y. Nishimura, David Hadley, F. d. M. Blaszczyk, M. Inomoto, S. Locke, Masaki Ishitsuka, M. Jakkapu, Yusuke Koshio, S. Sakai, D. Barrow, M. Lamoureux, P. Weatherly, P. de Perio, T. Boschi, T. Niwa, K. Nakamura, T. Yoshida, A. Pritchard, C. K. Jung, R. Matsumoto, M. Hartz, T. Shiozawa, C. Vilela, Ahmed Ali, M. Koshiba, Masato Shiozawa, H. Ozaki, T. Tashiro, S. Moriyama, S. Nakayama, R. Akutsu, L. H. V. Anthony, Hussain Kitagawa, S. J. Jenkins, B. Jamieson, R. G. Park, Song Chen, P. Paganini, M. Miura, Masayuki Nakahata, H. W. Sobel, Yuuki Nakano, Y. Uchida, B. D. Xu, Ll. Marti, Kate Scholberg, K. Hagiwara, Yutaka Nakajima, B. W. Pointon, D. Martin, Manabu Tanaka, K. Sato, G. Pintaudi, H. Okazawa, M. Ikeda, L. Wan, S. Molina Sedgwick, Hirokazu Ishino, Y. Kotsar, N. F. Calabria, Yuto Ashida, C. Yanagisawa, E. Kearns, C. Bronner, Masashi Yokoyama, Intae Yu, K. Yasutome, T. Nakamura, G. Collazuol, J. Walker, L. N. Machado, N. Ogawa, K. Nishijima, T. Wester, L. Bernard, T. Ishizuka, M. Harada, Tsuyoshi Nakaya, Y. Nagao, Atsushi Takeda, A. Minamino, Rongkun Wang, S. B. Kim, M. Shinoki, A. K. Ichikawa, N. McCauley, L. Labarga, T. Kobayashi, M. Malek, N. W. Prouse, B. Richards, T. Matsubara, S. Yamamoto, C. W. Walter, K. Sakashita, J. Feng, M. Posiadala-Zezula, W. Ma, B. Quilain, Hiroyuki Sekiya, Y. Kataoka, Y. Fukuda, Y. Takeuchi, T. Kajita, Takatomi Yano, M. Friend, M. Mori, Y. Sonoda, S. Sano, Yoshitaka Itow, G. Pronost, Shintaro Ito, S. Zsoldos, T. Tsukamoto, T. Okada, T. Ishida, A. Takenaka, UAM. Departamento de Física Teórica, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Super-Kamiokande, Abe, K., Bronner, C., Hayato, Y., Ikeda, M., Imaizumi, S., Kameda, J., Kanemura, Y., Kataoka, Y., Miki, S., Miura, M., Moriyama, S., Nagao, Y., Nakahata, M., Nakayama, S., Okada, T., Okamoto, K., Orii, A., Pronost, G., Sekiya, H., Shiozawa, M., Sonoda, Y., Suzuki, Y., Takeda, A., Takemoto, Y., Takenaka, A., Tanaka, H., Watanabe, S., Yano, T., Han, S., Kajita, T., Okumura, K., Tashiro, T., Wang, R., Xia, J., Megias, G. D., Bravo-Berguno, D., Labarga, L., Marti, Ll., Zaldivar, B., Pointon, B. W., Blaszczyk, F. D. M., Kearns, E., Raaf, J. L., Stone, J. L., Wan, L., Wester, T., Bian, J., Griskevich, N. J., Kropp, W. R., Locke, S., Mine, S., Smy, M. B., Sobel, H. W., Takhistov, V., Weatherly, P., Hill, J., Kim, J. Y., Lim, I. T., Park, R. G., Bodur, B., Scholberg, K., Walter, C. W., Bernard, L., Coffani, A., Drapier, O., El Hedri, S., Giampaolo, A., Gonin, M., Mueller, Th. A., Paganini, P., Quilain, B., Ishizuka, T., Nakamura, T., Jang, J. S., Learned, J. G., Anthony, L. H. V., Martin, D. G. R., Sztuc, A. A., Uchida, Y., Berardi, V., Catanesi, M. G., Radicioni, E., Calabria, N. F., Nascimento Machado, L., de Rosa, G., Collazuol, G., Iacob, F., Lamoureux, M., Ospina, N., Ludovici, L., Maekawa, Y., Nishimura, Y., Cao, S., Friend, M., Hasegawa, T., Ishida, T., Jakkapu, M., Kobayashi, T., Matsubara, T., Nakadaira, T., Nakamura, K., Oyama, Y., Sakashita, K., Sekiguchi, T., Tsukamoto, T., Kotsar, Y., Nakano, Y., Ozaki, H., Shiozawa, T., Suzuki, A. T., Takeuchi, Y., Yamamoto, S., Ali, A., Ashida, Y., Feng, J., Hirota, S., Kikawa, T., Mori, M., Nakaya, T., Wendell, R. A., Yasutome, K., Fernandez, P., Mccauley, N., Mehta, P., Pritchard, A., Tsui, K. M., Fukuda, Y., Itow, Y., Menjo, H., Niwa, T., Sato, K., Tsukada, M., Mijakowski, P., Jiang, J., Jung, C. K., Vilela, C., Wilking, M. J., Yanagisawa, C., Hagiwara, K., Harada, M., Horai, T., Ishino, H., Ito, S., Koshio, Y., Kitagawa, H., Ma, W., Piplani, N., Sakai, S., Kuno, Y., Barr, G., Barrow, D., Cook, L., Goldsack, A., Samani, S., Simpson, C., Wark, D., Nova, F., Boschi, T., Di Lodovico, F., Migenda, J., Molina Sedgwick, S., Taani, M., Zsoldos, S., Yang, J. Y., Jenkins, S. J., Malek, M., Mcelwee, J. M., Stone, O., Thiesse, M. D., Thompson, L. F., Okazawa, H., Kim, S. B., Yu, I., Nishijima, K., Koshiba, M., Iwamoto, K., Nakajima, Y., Ogawa, N., Yokoyama, M., Martens, K., Vagins, M. R., Izumiyama, S., Kuze, M., Tanaka, M., Yoshida, T., Inomoto, M., Ishitsuka, M., Ito, H., Matsumoto, R., Ohta, K., Shinoki, M., Martin, J. F., Tanaka, H. A., Towstego, T., Akutsu, R., Hartz, M., Konaka, A., de Perio, P., Prouse, N. W., Chen, S., Xu, B. D., Posiadala-Zezula, M., Hadley, D., Richards, B., Jamieson, B., Walker, J., Minamino, A., Pintaudi, G., Sano, S., Sasaki, R., and Ichikawa, A. K.
- Subjects
Astrophysics ,KAMIOKANDE ,Neutrino Astronomy ,GeV ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Neutrino astronomy Gravitational wave astronomy High energy astrophysics Black holes Compact objects Neutron stars Transient sources ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,LIGO ,010303 astronomy & astrophysics ,QC ,QB ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,energy: emission ,Black holes ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,High energy astrophysics ,High-energy astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Gravitational-wave astronomy ,Neutron stars ,neutrino: spectrum ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Compact objects ,flavor ,010308 nuclear & particles physics ,Gravitational wave ,background ,gravitational radiation ,Física ,Astronomy and Astrophysics ,trigger ,Transient sources ,flux ,Neutron star ,VIRGO ,Space and Planetary Science ,High Energy Physics::Experiment ,Gravitational wave astronomy ,Neutrino astronomy ,Super-Kamiokande ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,statistical - Abstract
The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves detected by the LIGO-Virgo Collaboration (LVC). Both low-energy ($7-100$ MeV) and high-energy ($0.1-10^5$ GeV) samples were analyzed in order to cover a very wide neutrino spectrum. Follow-ups of 36 (out of 39) gravitational waves reported in the GWTC-2 catalog were examined; no significant excess above the background was observed, with 10 (24) observed neutrinos compared with 4.8 (25.0) expected events in the high-energy (low-energy) samples. A statistical approach was used to compute the significance of potential coincidences. For each observation, p-values were estimated using neutrino direction and LVC sky map ; the most significant event (GW190602_175927) is associated with a post-trial p-value of $7.8\%$ ($1.4\sigma$). Additionally, flux limits were computed independently for each sample and by combining the samples. The energy emitted as neutrinos by the identified gravitational wave sources was constrained, both for given flavors and for all-flavors assuming equipartition between the different flavors, independently for each trigger and by combining sources of the same nature., Comment: 16 pages, 5 figures. v2: adding corrections from The Astrophysical Journal review
- Published
- 2021
- Full Text
- View/download PDF
6. Diffuse Supernova Neutrino Background search at Super-Kamiokande with neutron tagging
- Author
-
K. Sakashita, A. T. Suzuki, K. Okamoto, M. Posiadala-Zezula, T. Nakadaira, Takuto Suganuma, David Wark, Y. Kataoka, Y. Takeuchi, S. Sakai, Y. Nishimura, Shintaro Ito, Atsushi Takeda, G.D. Barr, B. Quilain, E. Kearns, T. Yano, Tatsuya Kikawa, L. Marti, Yasuhiro Nakajima, Masashi Yokoyama, Tatsushi Kinoshita, Joanna Zalipska, Y. Nagao, A. Minamino, Henry W. Sobel, Marco Mattiazzi, J. McElwee, J. Y. Kim, M. Shinoki, Kenzo Nakamura, M. Friend, N. W. Prouse, Yoshihiro Suzuki, H. A. Tanaka, C. W. Walter, A. Coffani, T. Ishizuka, N. McCauley, Tsuyoshi Nakaya, O. Stone, M. Malek, S. Miki, Takashi Kobayashi, David Hadley, T. Hasegawa, C. K. Jung, S. Yamamoto, Makoto Miura, Yuichi Oyama, O. Drapier, M. Ikeda, Masato Shiozawa, L. Ludovici, A. Takenaka, Hiroyuki Sekiya, S. Izumiyama, T. Matsubara, N. Piplani, Soo-Bong Kim, J. Y. Yang, Y. Fukuda, L. Wan, A. Ali, J. Feng, T. Tsukamoto, S. Locke, S. Mohan Lakshmi, A. Konaka, Hiroaki Menjo, M. Koshiba, Masahiro Kuze, F. Nova, M. Hartz, Takaaki Kajita, R. G. Park, Yuuki Nakano, Yusuke Koshio, R. Sasaki, D. Barrow, Thomas A. Mueller, T. Ishida, B. W. Pointon, Natalv Ospina, Kate Scholberg, K. Yasutome, John Fraser Martin, James Hill, T. Tashiro, Hirokazu Ishino, S. J. Jenkins, E. Radicioni, Marcus O'Flaherty, T. Nakamura, R. Matsumoto, G. Collazuol, Intae Yu, Mark Scott, N. Ogawa, J. L. Raaf, C. Yanagisawa, Yoshinari Hayato, L. Bernard, K. Martens, M. Jakkapu, S. Mine, K. M. Tsui, A. Goldsack, S. Nakayama, M. Taani, T. Boschi, R. A. Wendell, M. Mori, M. Lamoureux, Y. Sonoda, Hiroshi Ito, S. Sano, K. Nishijima, Yoshitaka Itow, T. Wester, S. Han, G. Pronost, H. Okazawa, M. J. Wilking, D. Martin, K. Sato, A. K. Ichikawa, J. Kameda, F. Iacob, P. Mijakowski, K. Abe, Shuhei Watanabe, B. Bodur, Y. Kanemura, A. Giampaolo, Pablo Fernandez, P. Mehta, T. Towstego, S. Zsoldos, Vincenzo Berardi, S. Cao, William R. Kropp, T. Sekiguchi, S. Chen, G. D. Megias, J. Bian, M. Gonin, J. Xia, Sonia El Hedri, M. Thiesse, K. Iwamoto, C. Bronner, Gianfranca De Rosa, J. S. Jang, H. Ozaki, Hussain Kitagawa, B. Jamieson, Patrick de Perio, Katsuki Hiraide, K. Nakamura, Y. Maekawa, Jeff N. Griskevich, S. Moriyama, G. Pintaudi, Masayuki Nakahata, Y. Uchida, N. F. Calabria, J. G. Learned, H. K. Tanaka, P. Paganini, B. D. Xu, S. Samani, M. G. Catanesi, Lester D.R. Thompson, M. R. Vagins, Y. Kotsar, John Walker, L. Cook, I. T. Lim, L. H. V. Anthony, R. Akutsu, C. Vilela, FD Lodovico, Junjie Jiang, V. Takhistov, Justyna Lagoda, Jingyuan Gao, W. Ma, L. Labarga, B. Richards, Kimihiro Okumura, Yasuhiro Takemoto, Masaki Ishitsuka, M. Inomoto, A. A. Sztuc, M. B. Smy, B. Zaldivar, J. Migenda, L. N. Machado, and M. Harada
- Subjects
Physics ,Supernova ,Neutron ,Astrophysics ,Neutrino ,Super-Kamiokande - Published
- 2021
- Full Text
- View/download PDF
7. Upgrade of Honda atmospheric neutrino flux calculation with implementing recent hadron interaction measurements
- Author
-
Hiroaki Menjo, Morihiro Honda, K. Sato, and Yoshitaka Itow
- Subjects
Physics ,Nuclear physics ,Upgrade ,Hadron ,Flux ,High Energy Physics::Experiment ,Atmospheric neutrino - Abstract
We will present the strategy to refurbish a simulation code ATMNC developed by M. Honda which provides an accurate atmospheric neutrino (atm-$\nu$) flux prediction and has greatly contributed to the neutrino experimental physics including Super-Kamiokande (SK). The dominant uncertainty of the Honda's calculation arises from insufficient understanding of the hadron interactions inside air showers. Many precise measurements for hadron production using accelerator beams have been performed or planned. Our goal is to incorporate these accelerator-data-driven modifications into ATMNC. This allows the systematic uncertainty of atm-$\nu$ oscillation analysis to be evaluated based on the accelerator measurements. In addition, the accelerator measurements provide kaon production data that plays important role in high energy flux. In this poster, we will show how the accelerator data are integrate into ATMNC, and evaluate the impact on the flux and its uncertainty.
- Published
- 2021
- Full Text
- View/download PDF
8. Low energy radioactivity BG model in Super-Kamiokande detector from SK-IV data
- Author
-
S. J. Jenkins, K. Nakamura, M. R. Vagins, M. Taani, J. L. Raaf, John Walker, H. Okazawa, Masaki Ishitsuka, S. Moriyama, A. A. Sztuc, P. Mehta, S. Miki, Masayuki Nakahata, Y. Uchida, I. T. Lim, L. H. V. Anthony, Junjie Jiang, V. Takhistov, Yoshinari Hayato, T. Towstego, M. Jakkapu, J. Y. Kim, Y. Maekawa, Patrick de Perio, Atsushi Takeda, T. Boschi, Yasuhiro Nakajima, J. G. Learned, Shuhei Watanabe, A. K. Ichikawa, T. Yano, Hiroshi Ito, A. T. Suzuki, K. Okamoto, Vincenzo Berardi, J. Kameda, S. Izumiyama, Joanna Zalipska, H. K. Tanaka, L. Cook, A. Coffani, S. Samani, M. G. Catanesi, O. Drapier, M. B. Smy, B. Zaldivar, Y. Takeuchi, J. Migenda, O. Stone, B. Bodur, T. Nakadaira, Takashi Kobayashi, P. Mijakowski, S. Zsoldos, Sonia El Hedri, T. Hasegawa, A. Ali, Katsuki Hiraide, Makoto Miura, K. Nishijima, M. Thiesse, K. Iwamoto, Justyna Lagoda, T. Wester, F. Iacob, Jingyuan Gao, Y. Nagao, A. Minamino, S. Mohan Lakshmi, Lester D.R. Thompson, M. Hartz, L. N. Machado, Kenzo Nakamura, K. Sakashita, W. Ma, T. Matsubara, William R. Kropp, T. Sekiguchi, S. Chen, M. Shinoki, M. Harada, N. McCauley, S. Sakai, M. Posiadala-Zezula, R. Akutsu, Marco Mattiazzi, J. Feng, M. Friend, Yuuki Nakano, K. Abe, Shintaro Ito, M. Malek, N. Piplani, B. W. Pointon, S. Yamamoto, Y. Kanemura, A. Giampaolo, Kate Scholberg, Hiroaki Menjo, N. W. Prouse, C. W. Walter, E. Kearns, David Wark, P. Paganini, Kimihiro Okumura, Takaaki Kajita, C. Vilela, T. Tashiro, FD Lodovico, M. Koshiba, B. D. Xu, Masashi Yokoyama, G.D. Barr, Yasuhiro Takemoto, T. Nakamura, S. Locke, Y. Kataoka, James Hill, M. Inomoto, Intae Yu, R. G. Park, Tatsuya Kikawa, G. D. Megias, Pablo Fernandez, R. Matsumoto, L. Marti, N. Ogawa, G. Pintaudi, David Hadley, Hiroyuki Sekiya, J. S. Jang, Hirokazu Ishino, N. Jeff Griskevich, L. Labarga, Soo-Bong Kim, S. Han, L. Bernard, T. Ishizuka, C. Yanagisawa, Tsuyoshi Nakaya, Y. Fukuda, L. Wan, B. Richards, T. Tsukamoto, K. Yasutome, Marcus O'Flaherty, C. K. Jung, Yuichi Oyama, M. Ikeda, A. Goldsack, N. F. Calabria, S. Nakayama, G. Collazuol, Mark Scott, Masato Shiozawa, R. A. Wendell, L. Ludovici, J. Y. Yang, T. Ishida, K. Martens, S. Mine, K. M. Tsui, Y. Kotsar, Y. Nishimura, Masahiro Kuze, F. Nova, R. Sasaki, A. Konaka, M. Lamoureux, Yusuke Koshio, D. Martin, J. Bian, H. Ozaki, Hussain Kitagawa, B. Jamieson, Natalv Ospina, S. Cao, D. Barrow, John Fraser Martin, A. Takenaka, K. Sato, C. Bronner, M. Gonin, J. Xia, Gianfranca De Rosa, Tatsushi Kinoshita, Yoshihiro Suzuki, Henry W. Sobel, J. McElwee, H. A. Tanaka, E. Radicioni, B. Quilain, M. Mori, Y. Sonoda, S. Sano, Yoshitaka Itow, Takuto Suganuma, G. Pronost, M. J. Wilking, Thomas A. Mueller, Pronost, Guillaume, Abe, Ko, Bronner, Christophe, Hayato, Yoshinari, Hiraide, Katsuki, Ikeda, Motoyasu, Kameda, Jun, Kanemura, Yuki, Kataoka, Yousuku, Miki, Shintaro, Miura, Makoto, Moriyama, Shigetaka, Nagao, Yoshiki, Nakahata, Masayuki, Nakayama, Shoei, Okamoto, Kohei, Sekiya, Hiroyuki, Shiozawa, Masato, Sonoda, Yutaro, Suzuki, Yoichiro, Takeda, Atsushi, Takemoto, Yasuhiro, Takenaka, Akira, Tanaka, Hidekazu, Watanabe, Shuhei, Yano, Takatomi, Han, Seungho, Kajita, Takaaki, Okumura, Kimihiro, Tashiro, Takuya, Xia, Junjie, Megias, Guillermo, Labarga, Lui, Marti, Llui, Zaldivar, Bryan, Pointon, Barry W., Kearns, Edward, Raaf, Jennifer L., Wan, Linyan, Wester, Thoma, Bian, Jianming, Griskevich, N. Jeff, Kropp, William R., Locke, Scott, Mine, Shunichi, Smy, Michael, Sobel, Henry W., Takhistov, Volodymyr, Hill, Jame, Kim, Jae Yool, Lim, In Taek, Park, Ryeong Gyoon, Bodur, Baran, Scholberg, Kate, Walter, Chri, Bernard, Laura, Coffani, Alice, Drapier, Olivier, El Hedri, Sonia, Giampaolo, Alberto, Gonin, Michel, Mueller, Thomas A., Paganini, Pascal, Quilain, Benjamin, Ishizuka, Takeharu, Nakamura, Taku, Jang, Jae Seung, Learned, John G., Cao, Son, Anthony, Lauren H. V., Martin, Daniel, Scott, Mark, Sztuc, Artur A., Uchida, Yoshi, Berardi, Vincenzo, Catanesi, Maria Gabriella, Radicioni, Emilio, Calabria, Nicola F., Machado, Lucas N., De Rosa, Gianfranca, Collazuol, Gianmaria, Iacob, Fabio, Lamoureux, Mathieu, Mattiazzi, Marco, Ospina, Natalv, Ludovici, Lucio, Maekawa, Yuto, Nishimura, Yasuhiro, Friend, Megan, Hasegawa, Takuya, Ishida, Taku, Kobayashi, Takashi, Jakkapu, Mahesh, Matsubara, Tsunayuki, Nakadaira, Takeshi, Nakamura, Kenzo, Oyama, Yuichi, Sakashita, Ken, Sekiguchi, Tetsuro, Tsukamoto, Toshifumi, Boschi, Tommaso, Di Lodovico, Francesca, Gao, Jingyuan, Migenda, Jost, Taani, Mahdi, Zsoldos, Stephane, Nakano, Yuuki, Ozaki, Hironori, Suzuki, Atsumu, Takeuchi, Yasuo, Yamamoto, Shotaro, Kotsar, Yurii, Ali, Ajmi, Feng, Jiahui, Kikawa, Tatsuya, Mori, Masamitsu, Nakaya, Tsuyoshi, Wendell, Roger, Yasutome, Kenji, Fernández, Pablo, Mccauley, Neil, Mehta, Pruthvi, Tsui, Ka Ming, Fukuda, Yoshiyuki, Itow, Yoshitaka, Menjo, Hiroaki, Sato, Kazufumi, Lagoda, Justyna, Lakshmi, S. Mohan, Mijakowski, Piotr, Zalipska, Joanna, Jiang, Junjie, Jung, Chang K., Vilela, Cristovao, Wilking, Michael, Yanagisawa, Chiaki, Harada, Masayuki, Ishino, Hirokazu, Ito, Shintaro, Kitagawa, Hussain, Koshio, Yusuke, Ma, Wenjie, Piplani, Nishtha, Sakai, Seiya, Barr, Gile, Barrow, Danial, Cook, Laurence, Goldsack, Alexander, Samani, Soniya, Wark, David, Nova, Federico, Yang, Jeong Yeol, Jenkins, Sam J., Malek, Matthew, Mcelwee, Jordan, Stone, Owen, Thiesse, Matthew D., Thompson, Lee F., Okazawa, Hiroko, Kim, Soo Bong, Yu, Intae, Ichikawa, Atsuko, Nakamura, Kiseki, Nishijima, Kyoshi, Koshiba, Masatoshi, Iwamoto, Konosuke, Nakajima, Yasuhiro, Ogawa, Natsumi, Yokoyama, Masashi, Martens, Kai, Vagins, Mark, Kuze, Masahiro, Izumiyama, Shota, Inomoto, Michitaka, Ishitsuka, Masaki, Ito, Hiroshi, Kinoshita, Tatsushi, Matsumoto, Ryo, Shinoki, Masataka, Suganuma, Takuto, Martin, John Fraser, Tanaka, Hirohisa, Towstego, Trevor, Akutsu, Ryosuke, de Perio, Patrick, Hartz, Mark, Konaka, Akira, Prouse, Nick, Chen, Shaomin, Xu, Benda D., Posiadala-Zezula, Magdalena, Hadley, David, O'Flaherty, Marcu, Richards, Benjamin, Jamieson, Blair, Walker, John, Minamino, Akihiro, Pintaudi, Ggiorgio, Sano, Shiochi, and Sasaki, Ryota
- Subjects
Physics ,Physics::Instrumentation and Detectors ,Solar neutrino ,Physics::Medical Physics ,Detector ,Water source ,chemistry.chemical_element ,Radon ,Nuclear physics ,Low energy ,chemistry ,High Energy Physics::Experiment ,Neutrino ,Super-Kamiokande ,Solar data - Abstract
The radioactivity background are among the most dangerous background for low energy neutrino analysis in Super-Kamiokande (SK), like the solar neutrino analysis. Among them, the main contribution is coming from $^{222}$Rn, which is spread in the detector's water due to the water source and to the photo multiplier (PMT) emanations. Up to now, its exact distribution in the detector was not known. Using our knowledge of the radon concentration in the detector water, and the SK-IV solar data, we developed a model of the radon distribution in the detector. The uncertainty on the Rn concentration associated with this model was estimated to be $\sim0.1$ mBq/m$^{3}$
- Published
- 2021
- Full Text
- View/download PDF
9. Status and Prospects of the LHCf and RHICf experiments
- Author
-
Yuki Shimizu, Yoshitaka Itow, Byungsik Hong, Kenta Sato, S. B. Ricciarini, Takashi Sako, Shoji Torii, Paolo Papini, Y. Goto, I. Nakagawa, M. Ueno, M. H. Kim, R. Seidl, Massimo Bongi, Raffaello D'Alessandro, Eugenio Berti, W. C. Turner, Alessia Tricomi, Moe Kondo, Hiroaki Menjo, Kiyoshi Tanida, Ken Ohashi, Yasushi Muraki, Katsuaki Kasahara, T. Tamura, Alessio Tiberio, G. Castellini, Maurice Haguenauer, Kenji Yoshida, Yutaka Matsubara, Lorenzo Bonechi, Nobuyuki Sakurai, and O. Adriani
- Subjects
Physics ,Physics::Instrumentation and Detectors ,High Energy Physics::Experiment ,Detectors and Experimental Techniques ,Nuclear Experiment ,Particle Physics - Experiment - Abstract
Precise understanding of hadronic interactions at high energies is a key to improve mass composition measurements of very high energy cosmic-rays and to solve the muon excess issue observed in high energy cosmic-ray experiments using an air-shower technique. The LHCf and RHICf experiments measures the differential production cross sections of very forward neutral particle as photons, neutral pions and neutrons at LHC and RHIC, respectively. These data are critically important to test and tune hadronic interaction models used for air-shower simulations. In this presentation, we introduce the recent results of both the experiments as well as our future operation plans. LHCf published an updated result of forward neutron measurement at pp, $\sqrt{s}$ = 13 TeV. From the observed neutron energy spectra, we also obtained the average inelasticity, which is one of the key parameters for air shower development, as 0.536 +0.031-0.037. In addition, several analysis are on-going; neutral pion measurement at pp, $\sqrt{s}$ = 13 TeV, central- forward correlation analysis with LHCf+ATLAS, photon measurement by RHICf. LHCf plans to have operations at $pp$ and $p$O during the LHC-Run3 period. At pp collisions, new silicon readout system will be introduced to improve the read-out speed, and 10 times more statistics of the previous operation in 2015 will be obtained. Thanks to high statistics, rare particles such as $\eta$, $K^0_s$ and $\Lambda$ will be addressed also. We also plan another operation at RHIC in 2024 with a new detector. The detector, a calorimeter composed of tungsten, Si pad and pixel layers, will have a much wider acceptance and higher sensitivity of $K^0_s$ measurement than the current detector.
- Published
- 2021
- Full Text
- View/download PDF
10. LHCf plan for proton-oxygen collisions at LHC
- Author
-
Yutaka Matsubara, G. Castellini, Massimo Bongi, Eugenio Berti, Kenta Sato, Yuki Shimizu, Nobuyuki Sakurai, Moe Kondo, Raffaello D'Alessandro, Yoshitaka Itow, Tadahisa Tamura, Maurice Haguenauer, Hiroaki Menjo, Katsuaki Kasahara, Alessia Tricomi, W. C. Turner, Shoji Torii, Lorenzo Bonechi, M. Ueno, Paolo Papini, S. B. Ricciarini, Alessio Tiberio, O. Adriani, Ken Ohashi, Yasushi Muraki, Takashi Sako, and Kenji Yoshida
- Subjects
Physics ,Nuclear physics ,Large Hadron Collider ,Proton ,chemistry ,chemistry.chemical_element ,Detectors and Experimental Techniques ,Nuclear Experiment ,Oxygen ,Particle Physics - Experiment - Abstract
The LHCf experiment is designed to provide precise measurements of very forward neutral particle production from high energy proton-proton, proton-ion and ion-ion collisions. This information is necessary to test and tune hadronic interaction models used by ground-based cosmic rays experiments to extract the average composition of Ultra High Energy Cosmic Rays. In order to reach this goal, LHCf makes use of two small sampling calorimeters installed in the LHC tunnel at $\pm 140$ m from Interaction Point 1, both able to detect neutral particles having pseudo-rapidity $\eta > 8.4$. In LHC Run I and II, the LHCf experiment acquired data relative to p-p collisions at $\sqrt{s} = $ 0.9, 2.76, 7 and 13 TeV, and p-Pb collisions at $\sqrt{s_{NN}} = $ 5.02 and 8.16 TeV. Forward production from p-p and p-Pb collisions are not directly applicable to the tuning of the model used to simulate extensive air showers, since the first interaction between a cosmic ray and an atmospheric nucleus generally involves a light nucleus, like N or O. In LHC Run III, we will have the unique opportunity to directly measure forward production from high energy p-O collisions, without the need to obtain this information by interpolating the measurements from p-p and p-Pb collisions. In this contribution, we discuss the importance of such a measurement, focusing on all the benefits in terms of a more direct and complete input for model tuning, and on the operation plans, including the importance to take data both from high energy p-O and O-O collisions.
- Published
- 2021
- Full Text
- View/download PDF
11. Very-forward neutral pion production cross section in proton-proton collisions at √s = 13 TeV measured with the LHCf experiment
- Author
-
Raffaello D'Alessandro, Katsuaki Kasahara, O. Adriani, Ken Ohashi, Yasushi Muraki, Yuki Shimizu, M. Ueno, Kenta Sato, Hiroaki Menjo, Yoshitaka Itow, Shoji Torii, G. Castellini, S. B. Ricciarini, Paolo Papini, Moe Kondo, Massimo Bongi, Eugenio Berti, Alessia Tricomi, Maurice Haguenauer, Alessio Tiberio, Kenji Yoshida, Yutaka Matsubara, W. C. Turner, Takashi Sako, Lorenzo Bonechi, Nobuyuki Sakurai, and Tadahisa Tamura
- Subjects
Physics ,Nuclear physics ,Cross section (physics) ,Pion ,Proton - Published
- 2021
- Full Text
- View/download PDF
12. Search for tens of MeV neutrinos associated with gamma-ray bursts in Super-Kamiokande
- Author
-
P. Fernandez, Y. Nishimura, M. Inomoto, J. Bian, P. de Perio, G. Pronost, L. Wan, M. Lamoureux, Shintaro Ito, S. Zsoldos, Y. Takeuchi, K. Martens, J. Xia, Y. Sonoda, O. Drapier, Takatomi Yano, S. El Hedri, T. Shiozawa, Ahmed Ali, Ll. Marti, K. Nakamura, C. Xu, Hiroaki Menjo, C. Bronner, A. Konaka, T. Sekiguchi, K. S. Ganezer, M. Hartz, A. Giampaolo, B. Jamieson, N. F. Calabria, J. G. Learned, Takaaki Kajita, K. Yasutome, S. Nakayama, A. Takenaka, M. Harada, Vincenzo Berardi, William R. Kropp, S. Chen, R. G. Park, L. Ludovici, Kimihiro Okumura, Yasuhiro Takemoto, K. M. Tsui, A. Takeda, Hiromasa Tanaka, C. W. Walter, H. Okazawa, K. Okamoto, Y. Ashida, J. McElwee, S. Izumiyama, D. Barrow, Y. Fukuda, M. Ikeda, R. P. Litchfield, T. Okada, Intae Yu, N. Ogawa, Kate Scholberg, H. Miyabe, G. D. Megias, C. Simpson, Makoto Sakuda, L. Bernard, S. Samani, M. G. Catanesi, J. Y. Yang, Masaki Ishitsuka, M. Thiesse, F. d. M. Blaszczyk, Jl Stone, Yoshitaka Kuno, G. Pintaudi, K. Ohta, Hiroyuki Sekiya, F. Nova, Y. Kato, P. Weatherly, K. Abe, S. Han, T. Sugimoto, Hirokazu Ishino, Masayuki Nakahata, N. McCauley, C. M. Nantais, B. Zaldivar, T. Nakadaira, S. Sakai, E. Kearns, A. Goldsack, Michael B. Smy, M. Jakkapu, R. A. Wendell, Y. Uchida, M. Posiadala-Zezula, Y. Oyama, B. Bodur, C. Vilela, G. De Rosa, K. Sato, G. Collazuol, Luis Labarga, J. Kameda, J. Feng, D. Fukuda, T. Niwa, P. Mijakowski, P. Paganini, B. D. Xu, N. J. Griskevich, P. Mehta, T. Horai, C. K. Jung, Lester D.R. Thompson, Yusuke Koshio, D. Bravo-Berguño, S. Matsuno, T. Tsukamoto, K. Hagiwara, S. Hirota, M. Koshiba, Y. Nakajima, G.D. Barr, Yuuki Nakano, T. Mochizuki, Stephen J. Jenkins, I. T. Lim, T. Ishida, Y. Isobe, L. N. Machado, T. Boschi, John Walker, Th. A. Mueller, Hiroshi Ito, B. W. Pointon, M. Taani, R. Akutsu, A. A. Sztuc, Makoto Hasegawa, L. H. V. Anthony, Tatsuya Kikawa, Volodymyr Takhistov, Yousuke Kataoka, N. W. Prouse, S. V. Cao, A. Pritchard, M. Tsukada, M. Gonin, Yoshihiro Suzuki, Y. Nagao, A. Minamino, M. Shinoki, M. Malek, J. Y. Kim, J. L. Raaf, S. Yamamoto, T. Nakamura, S. Locke, M. Jiang, A. Coffani, Yasuhiro Kishimoto, O. Stone, Takashi Kobayashi, T. Towstego, T. Hasegawa, S. Mine, Takahiko Matsubara, K. Frankiewicz, N. Piplani, A. Orii, Mark R. Vagins, S. B. Kim, A. K. Ichikawa, K. E. Nakamura, S. Molina Sedgwick, B. Richards, Ken Sakashita, W. Ma, R. Matsumoto, B. Quilain, J. F. Martin, M. Friend, Masato Shiozawa, Y. Choi, L. Cook, A. Suzuki, Masashi Yokoyama, T. Ishizuka, Tsuyoshi Nakaya, J. S. Jang, Masahiro Kuze, R. Sasaki, Henry W. Sobel, Kyoshi Nishijima, Natalv Ospina, Shigetaka Moriyama, H. A. Tanaka, S. Imaizumi, K. Iwamoto, T. Tashiro, Manabu Tanaka, Yoshinari Hayato, C. Yanagisawa, T. Wester, Yoshitaka Itow, M. Miura, M. J. Wilking, Takashi Yoshida, F. Iacob, E. Radicioni, John Hill, D. L. Wark, Y. Takahira, R. Wang, M. Mori, F. Di Lodovico, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Super-Kamiokande, and Super-Kamiokande Collaboration
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics ,KAMIOKANDE ,gamma ray: burst ,01 natural sciences ,Fluence ,Coincidence ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Positron ,F03 Ultra-high energy phenomena of cosmic rays ,neutrino: energy ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010303 astronomy & astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,background ,High Energy Physics::Phenomenology ,F22 Neutrinos from supernova remnant and other astronomical objects ,network ,positron ,High Energy Physics::Experiment ,C43 Underground experiments ,Underground experiments Ultra-high energy phenomena of cosmic rays Neutrinos from supernova remnant and other astronomical objects ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,Super-Kamiokande ,Gamma-ray burst ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Energy (signal processing) ,Bar (unit) - Abstract
A search for neutrinos produced in coincidence with Gamma-Ray Bursts(GRB) was conducted with the Super-Kamiokande (SK) detector. Between December 2008 and March 2017, the Gamma-ray Coordinates Network recorded 2208 GRBs that occurred during normal SK operation. Several time windows around each GRB were used to search for coincident neutrino events. No statistically significant signal in excess of the estimated backgrounds was detected. The $\bar\nu_e$ fluence in the range from 8 MeV to 100 MeV in positron total energy for $\bar\nu_e+p\rightarrow e^{+}+n$ was found to be less than $\rm 5.07\times10^5$ cm$^{-2}$ per GRB in 90\% C.L. Upper bounds on the fluence as a function of neutrino energy were also obtained., Comment: 29 pages, 16 figures, 5 tables, accepted by PTEP
- Published
- 2021
- Full Text
- View/download PDF
13. Follow-up of GWTC-2 gravitational wave events with neutrinos from the Super-Kamiokande detector
- Author
-
Vincenzo Berardi, A. A. Sztuc, M. Thiesse, K. Iwamoto, P. Mehta, M. Koshiba, S. J. Jenkins, M. Taani, R. G. Park, H. Okazawa, Y. Takeuchi, Patrick de Perio, Kimihiro Okumura, K. Martens, S. Han, S. Cao, Thomas A. Mueller, E. Kearns, M. R. Vagins, David Hadley, Henry W. Sobel, Yoshinari Hayato, K. Yasutome, S. Mine, K. M. Tsui, Masashi Yokoyama, T. Towstego, C. Bronner, J. Y. Yang, Yasuhiro Takemoto, O. Drapier, J. McElwee, Gianfranca De Rosa, Makoto Miura, E. Radicioni, M. B. Smy, J. S. Jang, Shuhei Watanabe, A. Konaka, Marco Mattiazzi, David Wark, B. Zaldivar, J. Migenda, M. Lamoureux, T. Ishizuka, M. Friend, S. Zsoldos, B. Bodur, H. A. Tanaka, T. Matsubara, N. W. Prouse, Katsuki Hiraide, Tsuyoshi Nakaya, C. W. Walter, Masaki Ishitsuka, S. Locke, S. Miki, Hirokazu Ishino, J. Feng, Sonia El Hedri, Masahiro Kuze, Yusuke Koshio, John Walker, D. Barrow, S. Mohan Lakshmi, J. L. Raaf, M. Mori, Hiroaki Menjo, Y. Sonoda, F. Nova, S. Sano, R. Sasaki, Marcus O'Flaherty, Takaaki Kajita, Yoshitaka Itow, G. Collazuol, M. Jakkapu, Natalv Ospina, Mark Scott, Y. Nishimura, Hiroyuki Sekiya, Soo-Bong Kim, B. Quilain, James Hill, G. Pronost, M. Inomoto, Y. Fukuda, L. Wan, T. Yano, John Fraser Martin, I. T. Lim, T. Boschi, Y. Maekawa, K. Nakamura, M. J. Wilking, J. Bian, K. Abe, L. Bernard, Y. Nagao, A. Minamino, Tatsushi Kinoshita, S. Izumiyama, C. K. Jung, Hiroshi Ito, N. Jeff Griskevich, P. Paganini, Y. Kanemura, M. Ikeda, A. Giampaolo, Masato Shiozawa, L. Ludovici, B. D. Xu, Yoshihiro Suzuki, S. Moriyama, F. Iacob, M. Shinoki, M. Gonin, J. Xia, L. H. V. Anthony, Masayuki Nakahata, J. G. Learned, R. Matsumoto, Takuto Suganuma, Y. Uchida, A. Ali, Kate Scholberg, Pablo Fernandez, N. McCauley, L. N. Machado, H. K. Tanaka, S. Samani, M. Malek, M. G. Catanesi, Junjie Jiang, William R. Kropp, T. Sekiguchi, M. Harada, S. Chen, Kenzo Nakamura, H. Ozaki, S. Yamamoto, Yuuki Nakano, A. T. Suzuki, K. Okamoto, Hussain Kitagawa, B. Jamieson, G. D. Megias, B. W. Pointon, A. K. Ichikawa, T. Nakadaira, J. Kameda, Lester D.R. Thompson, Yuichi Oyama, V. Takhistov, P. Mijakowski, S. Sakai, T. Hasegawa, Atsushi Takeda, G. Pintaudi, Yasuhiro Nakajima, N. F. Calabria, Joanna Zalipska, K. Sakashita, T. Nakamura, N. Piplani, Intae Yu, N. Ogawa, M. Posiadala-Zezula, C. Yanagisawa, J. Y. Kim, A. Goldsack, S. Nakayama, R. A. Wendell, Y. Kataoka, A. Coffani, O. Stone, Takashi Kobayashi, D. Martin, K. Sato, G.D. Barr, Tatsuya Kikawa, L. Marti, M. Hartz, T. Tashiro, K. Nishijima, T. Wester, Justyna Lagoda, Jingyuan Gao, W. Ma, A. Takenaka, T. Tsukamoto, L. Labarga, T. Ishida, B. Richards, Shintaro Ito, Y. Kotsar, C. Vilela, FD Lodovico, L. Cook, R. Akutsu, Lamoureux, Mathieu, Abe, Ko, Bronner, Christophe, Hayato, Yoshinari, Hiraide, Katsuki, Ikeda, Motoyasu, Kameda, Jun, Kanemura, Yuki, Kataoka, Yousuku, Miki, Shintaro, Miura, Makoto, Moriyama, Shigetaka, Nagao, Yoshiki, Nakahata, Masayuki, Nakayama, Shoei, Okamoto, Kohei, Pronost, Guillaume, Sekiya, Hiroyuki, Shiozawa, Masato, Sonoda, Yutaro, Suzuki, Yoichiro, Takeda, Atsushi, Takemoto, Yasuhiro, Takenaka, Akira, Tanaka, Hidekazu, Watanabe, Shuhei, Yano, Takatomi, Han, Seungho, Kajita, Takaaki, Okumura, Kimihiro, Tashiro, Takuya, Xia, Junjie, Megias, Guillermo, Labarga, Lui, Marti, Llui, Zaldivar, Bryan, Pointon, Barry W., Kearns, Edward, Raaf, Jennifer L., Wan, Linyan, Wester, Thoma, Bian, Jianming, Griskevich, N. Jeff, Kropp, William R., Locke, Scott, Mine, Shunichi, Smy, Michael, Sobel, Henry W., Takhistov, Volodymyr, Hill, Jame, Kim, Jae Yool, Lim, In Taek, Park, Ryeong Gyoon, Bodur, Baran, Scholberg, Kate, Walter, Chri, Bernard, Laura, Coffani, Alice, Drapier, Olivier, El Hedri, Sonia, Giampaolo, Alberto, Gonin, Michel, Mueller, Thomas A., Paganini, Pascal, Quilain, Benjamin, Ishizuka, Takeharu, Nakamura, Taku, Jang, Jae Seung, Learned, John G., Cao, Son, Anthony, Lauren H. V., Martin, Daniel, Scott, Mark, Sztuc, Artur A., Uchida, Yoshi, Berardi, Vincenzo, Catanesi, Maria Gabriella, Radicioni, Emilio, Calabria, Nicola F., Machado, Lucas N., De Rosa, Gianfranca, Collazuol, Gianmaria, Iacob, Fabio, Mattiazzi, Marco, Ospina, Natalv, Ludovici, Lucio, Maekawa, Yuto, Nishimura, Yasuhiro, Friend, Megan, Hasegawa, Takuya, Ishida, Taku, Kobayashi, Takashi, Jakkapu, Mahesh, Matsubara, Tsunayuki, Nakadaira, Takeshi, Nakamura, Kenzo, Oyama, Yuichi, Sakashita, Ken, Sekiguchi, Tetsuro, Tsukamoto, Toshifumi, Boschi, Tommaso, Di Lodovico, Francesca, Gao, Jingyuan, Migenda, Jost, Taani, Mahdi, Zsoldos, Stephane, Nakano, Yuuki, Ozaki, Hironori, Suzuki, Atsumu, Takeuchi, Yasuo, Yamamoto, Shotaro, Kotsar, Yurii, Ali, Ajmi, Feng, Jiahui, Kikawa, Tatsuya, Mori, Masamitsu, Nakaya, Tsuyoshi, Wendell, Roger, Yasutome, Kenji, Fernández, Pablo, Mccauley, Neil, Mehta, Pruthvi, Tsui, Ka Ming, Fukuda, Yoshiyuki, Itow, Yoshitaka, Menjo, Hiroaki, Sato, Kazufumi, Lagoda, Justyna, Lakshmi, S. Mohan, Mijakowski, Piotr, Zalipska, Joanna, Jiang, Junjie, Jung, Chang K., Vilela, Cristovao, Wilking, Michael, Yanagisawa, Chiaki, Harada, Masayuki, Ishino, Hirokazu, Ito, Shintaro, Kitagawa, Hussain, Koshio, Yusuke, Ma, Wenjie, Piplani, Nishtha, Sakai, Seiya, Barr, Gile, Barrow, Danial, Cook, Laurence, Goldsack, Alexander, Samani, Soniya, Wark, David, Nova, Federico, Yang, Jeong Yeol, Jenkins, Sam J., Malek, Matthew, Mcelwee, Jordan, Stone, Owen, Thiesse, Matthew D., Thompson, Lee F., Okazawa, Hiroko, Kim, Soo Bong, Yu, Intae, Ichikawa, Atsuko, Nakamura, Kiseki, Nishijima, Kyoshi, Koshiba, Masatoshi, Iwamoto, Konosuke, Nakajima, Yasuhiro, Ogawa, Natsumi, Yokoyama, Masashi, Martens, Kai, Vagins, Mark, Kuze, Masahiro, Izumiyama, Shota, Inomoto, Michitaka, Ishitsuka, Masaki, Ito, Hiroshi, Kinoshita, Tatsushi, Matsumoto, Ryo, Shinoki, Masataka, Suganuma, Takuto, Martin, John Fraser, Tanaka, Hirohisa, Towstego, Trevor, Akutsu, Ryosuke, de Perio, Patrick, Hartz, Mark, Konaka, Akira, Prouse, Nick, Chen, Shaomin, Xu, Benda D., Posiadala-Zezula, Magdalena, Hadley, David, O'Flaherty, Marcu, Richards, Benjamin, Jamieson, Blair, Walker, John, Minamino, Akihiro, Pintaudi, Ggiorgio, Sano, Shiochi, and Sasaki, Ryota
- Subjects
Physics ,Particle physics ,Gravitational wave ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Detector ,Flux ,law.invention ,law ,Time windows ,High Energy Physics::Experiment ,Total energy ,Neutrino ,Super-Kamiokande - Abstract
Super-Kamiokande (SK) is a 50-kt water Cherenkov detector, instrumented with $\sim 13$k photo-multipliers and running since 1996. It is sensitive to neutrinos with energies ranging from 4.5 MeV to several TeV. A new framework has been developed for the follow-up of gravitational wave (GW) alerts issued by the LIGO-Virgo collaboration (LVC). Neutrinos are searched for, using a 1000-second time window centered on the alert time and in both SK low-energy and high-energy samples. Such observation can then be used to constrain the neutrino emission from the GW source. The significance of potential signals has been obtained by comparing neutrino direction with the localization of the GW. The computation of limits on incoming neutrino flux and on the total energy emitted in neutrinos by the source has been performed for the different neutrino flavors. The results using the LVC GWTC-2 catalog (covering O3a period) are presented, as well as the outlooks for the future real-time public release of follow-ups for the O4 period (in 2022) and beyond.
- Published
- 2021
14. Search for proton decay via p→e+π0 and p→μ+π0 with an enlarged fiducial volume in Super-Kamiokande I-IV
- Author
-
J. S. Jang, B. Bodur, Yuji Kishimoto, L. H. V. Anthony, Rongkun Wang, J. L. Raaf, L. Labarga, K. Nakamura, T. Niwa, T. Kobayashi, F. d. M. Blaszczyk, M. Jakkapu, M. Hartz, Y. Nishimura, P. Weatherly, S. Moriyama, Y. Isobe, T. Boschi, Hiroshi Ito, B. Richards, G. Santucci, Masayuki Nakahata, N. Ospina, Y. Uchida, V. Takhistov, C. K. Jung, M. Mori, M. Taani, Y. Sonoda, M. Ikeda, M. Koshiba, P. de Perio, T. Yano, A. T. Suzuki, K. Okamoto, J. F. Martin, Masato Shiozawa, Y. Choi, Yoshitaka Itow, H. Okazawa, G. Pintaudi, E. Radicioni, L. Ludovici, W. R. Kropp, K. Sakashita, Yutaka Nakajima, C. Xu, Hiroaki Menjo, P. Paganini, M. Miura, T. Nakadaira, G. Pronost, F. Iacob, R. G. Park, B. D. Xu, N. F. Calabria, O. Drapier, Makoto Sakuda, Ke. Nakamura, M. Jiang, A. Coffani, M. Posiadala-Zezula, T. Horai, Ko Okumura, H. W. Sobel, S. Matsuno, A. Giampaolo, S. Molina Sedgwick, Yuuki Nakano, T. Mochizuki, T. Tashiro, T. Towstego, S. Imaizumi, K. Hagiwara, H.A. Tanaka, S. Cao, S. Sakai, B. W. Pointon, F. Nova, R. Sasaki, R. Matsumoto, Intae Yu, P. Mehta, Y. Kataoka, D. Fukuda, C. Bronner, M. G. Catanesi, S. Han, Pablo Fernandez, H. Miyabe, M. J. Wilking, Yuichi Oyama, R. P. Litchfield, C. M. Nantais, D. Bravo-Berguño, B. Quilain, J. G. Learned, K. Yasutome, S. Zsoldos, Y. Kuno, Ke. Abe, K. Nishijima, S. Locke, Atsushi Takeda, J. C. Hill, K. Ohta, T. Wester, E. Kearns, Vincenzo Berardi, N. Piplani, G. De Rosa, Masashi Yokoyama, J. L. Stone, David A. Wark, J. Y. Yang, M. Tsukada, Y. Takahira, Masaki Ishitsuka, M. Thiesse, K. Iwamoto, G.D. Barr, A. Konaka, S. J. Jenkins, M. R. Vagins, J. Walker, N. J. Griskevich, A. Ali, Yusuke Koshio, Y. Takemoto, A. Pritchard, W. Y. Ma, D. Barrow, L. F. Thompson, T. Ishizuka, Makoto Hasegawa, Y. Nagao, J. McElwee, A. Minamino, Tsuyoshi Nakaya, B. Jamieson, M. Shinoki, K. Frankiewicz, N. McCauley, S. B. Kim, I. T. Lim, S. Yamamoto, T. Matsubara, J. Y. Kim, A. Orii, S. El Hedri, J. Feng, L. Cook, Y. Takeuchi, T. Kajita, J. Bian, H. K. Tanaka, Seiko Hirota, T. Kikawa, M. Gonin, J. Xia, M. Friend, Masaaki Tanaka, N. W. Prouse, C. W. Walter, T. Sugimoto, Hiroyuki Sekiya, Y. Fukuda, L. Wan, R. Akutsu, Y. Hayato, T. Sekiguchi, Yasunari Suzuki, T. Shiozawa, C. Vilela, Ll. Marti, T. Yoshida, Song Chen, K. S. Ganezer, Yuto Ashida, T. Tsukamoto, T. Okada, T. Nakamura, N. Ogawa, T. Ishida, C. Yanagisawa, A. Goldsack, S. Nakayama, R. A. Wendell, A. Takenaka, K. Sato, A. K. Ichikawa, J. Kameda, Th. A. Mueller, Shintaro Ito, P. Mijakowski, Kalen Martens, Kate Scholberg, S. Mine, K. M. Tsui, Takehisa Hasegawa, M. Lamoureux, Hirokazu Ishino, Chris Simpson, G. Collazuol, F. Di Lodovico, M. Kuze, M. Inomoto, A. A. Sztuc, M. B. Smy, B. Zaldivar, Yuta Kato, L. N. Machado, and M. Harada
- Subjects
Physics ,010308 nuclear & particles physics ,Proton decay ,Detector ,01 natural sciences ,Lower limit ,Nuclear physics ,Volume (thermodynamics) ,0103 physical sciences ,Pi ,Atmospheric neutrino ,010306 general physics ,Fiducial marker ,Super-Kamiokande - Abstract
We have searched for proton decay via p→e+π0 and p→μ+π0 modes with the enlarged fiducial volume data of Super-Kamiokande from April 1996 to May 2018, which corresponds to 450 kton·years exposure. We have accumulated about 25% more livetime and enlarged the fiducial volume of the Super-Kamiokande detector from 22.5 kton to 27.2 kton for this analysis, so that 144 kton·years of data, including 78 kton·years of additional fiducial volume data, has been newly analyzed. No candidates have been found for p→e+π0 and one candidate remains for p→μ+π0 in the conventional 22.5 kton fiducial volume and it is consistent with the atmospheric neutrino background prediction. We set lower limits on the partial lifetime for each of these modes: τ/B(p→e+π0)>2.4×1034 years and τ/B(p→μ+π0)>1.6×1034 years at 90% confidence level.
- Published
- 2020
- Full Text
- View/download PDF
15. Transverse Single-Spin Asymmetry for Very Forward Neutral Pion Production in Polarized p+p Collisions at s=510 GeV
- Author
-
Takashi Sako, Yoshitaka Itow, Jongmin Lee, M. H. Kim, T. Ljubicic, N. Sakurai, R. Seidl, O. Adriani, K. Sato, Y. Makino, Eugenio Berti, Hiroaki Menjo, Raffaello D'Alessandro, I. Nakagawa, A. Ogawa, K. Tanida, Shoji Torii, Y. Goto, Lorenzo Bonechi, Q. D. Zhou, M. Ueno, K. Kasahara, J. S. Park, Alessia Tricomi, and Byung-Sik Hong
- Subjects
Physics ,media_common.quotation_subject ,General Physics and Astronomy ,Asymmetry ,Momentum ,Nuclear physics ,Transverse plane ,Pion ,Pseudorapidity ,High Energy Physics::Experiment ,Nuclear Experiment ,Relativistic Heavy Ion Collider ,STAR detector ,media_common ,Spin-½ - Abstract
Transverse single-spin asymmetries of very forward neutral pions generated in polarized p+p collisions allow us to understand the production mechanism in terms of perturbative and nonperturbative strong interactions. During 2017, the RHICf Collaboration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized p+p collisions at sqrt[s]=510 GeV. The large nonzero asymmetries increasing both in longitudinal momentum fraction x_{F} and transverse momentum p_{T} have been observed at low transverse momentum p_{T}
- Published
- 2020
- Full Text
- View/download PDF
16. Measurement of forward photon production cross-section in proton–proton collisions at s=13TeV with the LHCf detector
- Author
-
T. K. Sako, Hiroaki Menjo, Yoshitaka Itow, Alessia Tricomi, Toshiharu Suzuki, A. Tiberio, E. Matsubayashi, M. Haguenauer, N. Sakurai, O. Adriani, Y. Makino, T. Tamura, M. Ueno, K. Kasahara, W. C. Turner, Kimiaki Masuda, Raffaello D'Alessandro, S. B. Ricciarini, Eugenio Berti, M. Bongi, P. Papini, Lorenzo Bonechi, T. Iwata, Yasushi Muraki, Maiko Shinoda, Shoji Torii, and Q. D. Zhou
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Large Hadron Collider ,Proton ,010308 nuclear & particles physics ,Hadron ,Cosmic ray ,Interaction model ,7. Clean energy ,01 natural sciences ,Nuclear physics ,Pseudorapidity ,0103 physical sciences ,Ultra-high-energy cosmic ray ,Nuclear Experiment ,010306 general physics - Abstract
In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of η>10.94 and 8.99>η>8.81 , measured by the LHCf experiment with proton–proton collisions at s=13TeV . The results from the analysis of 0.191nb−1 of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.
- Published
- 2018
- Full Text
- View/download PDF
17. MC study for the effect of diffractive events on air shower developments
- Author
-
Hiroaki Menjo, Ken Ohashi, and Yoshitaka Itow
- Subjects
Nuclear physics ,Physics ,Work (thermodynamics) ,Air shower ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Cosmic ray ,Observable ,Mass composition ,Energy (signal processing) - Abstract
The origin of ultra-high energy cosmic rays is unknown and the mass composition is one of the key observables to understand the origin. The mass composition is estimated by comparing a prediction of the depth of maximum of shower developments, $X_{max}$, with experimental data, however, the $X_{max}$ prediction depends on the choice of hadronic interaction modes in the simulation. One of the proposed sources of the difference is the different modeling of diffractive collisions among the models. In this work, we estimate the effect of detail of diffractive collisions at the first interaction of cosmic-rays with atmospheric nuclei on the air shower developments by using the air shower simulation package COSMOS 8.035. The results show that the modeling of diffractive collisions at the first interaction is not the main source of the model discrepancies of the $X_{max}$ prediction.
- Published
- 2019
- Full Text
- View/download PDF
18. The energy spectrum of forward photons measured by the RHICf experiment in $\sqrt{s}$ = 510 GeV proton-proton collisions
- Author
-
Y. Goto, Alessia Tricomi, N. Sakurai, Hiroaki Menjo, Kenta Sato, Raffaello D'Alessandro, Takashi Sako, Junsang Park, O. Adriani, I. Nakagawa, Shoji Torii, M. Ueno, Katsuaki Kasahara, Eugenio Berti, Kiyoshi Tanida, M. H. Kim, Byungsik Hong, Lorenzo Bonechi, R. Saidl, Ken Ohashi, and Yoshitaka Itow
- Subjects
Physics ,Nuclear physics ,Photon ,Proton ,Hadron ,Monte Carlo method ,Energy spectrum ,High Energy Physics::Experiment ,Nuclear Experiment ,Relativistic Heavy Ion Collider ,Energy (signal processing) ,Particle identification - Abstract
The Relativistic Heavy Ion Collider forward (RHICf) experiment aims at understanding the high-energy hadronic interaction by measuring the cross sections of very forward neutral particles in proton-proton collisions at $\sqrt{s}$ = 510 GeV. For the analysis of the photon measurement, the trigger efficiency and the particle identification performance are studied by using the Monte Carlo simulation data and the experimental data. In the RHICf operation, two kinds of trigger modes (Shower, HighEM) were implemented. The trigger efficiency of the Shower trigger is 100$\%$ for photons with the energies more than 20 GeV. The HighEM trigger is designed to detect high energy photons effectively, and the trigger efficiency of the HighEM trigger is 90$\%$ for photons with the energies more than 130 GeV. The correction factor for the photon identification is calculated by using the efficiency and purity. It is found that this correction does not make a sizeable effect on the shape of the energy spectrum because the energy dependency of the factor is small.
- Published
- 2019
- Full Text
- View/download PDF
19. A simulation study for the effect of diffractive collisions on the air shower developments
- Author
-
Katsuaki Kasahara, Hiroaki Menjo, Takashi Sako, Yoshitaka Itow, and Ken Ohashi
- Subjects
Nuclear physics ,Physics ,Air shower ,Proton ,Hadron ,Interaction model ,Cosmic ray ,Type (model theory) ,Nuclear Experiment ,Collision ,Energy (signal processing) - Abstract
The mass composition of ultra-high energy cosmic rays is important to understand their origin. The maximum depth of air shower developments, $X_{max}$, is one of the indicators of the mass composition. However, the prediction of $X_{max}$ depends on the choice of the hadronic interaction model, which makes it difficult to interpret the mass composition. Diffractive collision is a collision type of hadronic interactions and one of the proposed sources of this uncertainty. In this study, we estimate the effect of the fraction of the diffractive collision on the prediction of the mean of $X_{max}$ for the $10^{19}$ eV proton incident case by using air shower simulation package CONEX 5.64 and by artificially modifying the fraction of the diffractive collisions in the air shower simulation. The effect of the fraction difference among the major interaction models is estimated to be 8.9 g/cm$^2$, which is non-negligible. Furthermore, we demonstrate that even if the same fraction of diffractive collisions is used in the models, the discrepancy between the current models in the $X_{max}$ prediction does not reduce. Other sources of model discrepancy such as particle production after diffractive collisions must be studied more carefully.
- Published
- 2019
- Full Text
- View/download PDF
20. Update of the atmospheric neutrino flux simulation ATMNC for next-generation neutrino experiment
- Author
-
Yoshitaka Itow, K. Sato, Hiroaki Menjo, and M. Honda
- Subjects
Nuclear physics ,Physics ,History ,Flux ,Neutrino ,Atmospheric neutrino ,Computer Science Applications ,Education - Published
- 2020
- Full Text
- View/download PDF
21. Measurement of inclusive forward neutron production cross section in proton-proton collisions at $$ \sqrt{s}=13 $$ TeV with the LHCf Arm2 detector
- Author
-
Toshiharu Suzuki, Raffaello D'Alessandro, Y. Makino, Katsuaki Kasahara, M. Bongi, Yasushi Muraki, W. C. Turner, Kimiaki Masuda, M. Haguenauer, Alessia Tricomi, N. Sakurai, Masato Shinoda, Yoshitaka Itow, E. Berti, Q. D. Zhou, O. Adriani, Shoji Torii, A. Tiberio, Kenta Sato, Hiroaki Menjo, T. Tamura, Ken Ohashi, L. Bonechi, Takashi Sako, S. B. Ricciarini, P. Papini, S. Detti, M. Ueno, École polytechnique (X), and LHCf
- Subjects
p p: scattering ,Nuclear and High Energy Physics ,Particle physics ,interaction: model ,Proton ,13000 GeV-cms ,air ,FOS: Physical sciences ,Unfolding ,01 natural sciences ,energy dependence ,rapidity dependence ,High Energy Physics - Experiment ,differential cross section: measured ,High Energy Physics - Experiment (hep-ex) ,Cross section (physics) ,Hadron-Hadron scattering (experiments) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,structure ,cosmic radiation: UHE ,Nuclear Experiment ,010306 general physics ,Physics ,Range (particle radiation) ,rapidity: difference ,Large Hadron Collider ,showers: atmosphere ,hep-ex ,010308 nuclear & particles physics ,LHC-F ,Forward physics, Hadron-Hadron scattering (experiments), Unfolding ,CERN LHC Coll ,Pseudorapidity ,Forward physics ,High Energy Physics::Experiment ,Production (computer science) ,n: production ,numerical calculations: Monte Carlo ,p p: colliding beams ,Particle Physics - Experiment ,Energy (signal processing) ,experimental results - Abstract
In this paper, we report the measurement relative to the production of forward neutrons in proton-proton collisions at $ \sqrt{s}=13 $ TeV obtained using the LHCf Arm2 detector at the Large Hadron Collider. The results for the inclusive differential production cross section are presented as a function of energy in three different pseudorapidity regions: η > 10.76, 8.99 < η < 9.22 and 8.81 < η < 8.99. The analysis was performed using a data set acquired in June 2015 that corresponds to an integrated luminosity of 0.194 nb$^{−1}$. The measurements were compared with the predictions of several hadronic interaction models used to simulate air showers generated by Ultra High Energy Cosmic Rays. None of these generators showed good agreement with the data for all pseudorapidity intervals. For η > 10.76, no model is able to reproduce the observed peak structure at around 5 TeV and all models underestimate the total production cross section: among them, QGSJET II-04 shows the smallest deficit with respect to data for the whole energy range. For 8.99 < η < 9.22 and 8.81 < η < 8.99, the models having the best overall agreement with data are SIBYLL 2.3 and EPOS-LHC, respectively: in particular, in both regions SIBYLL 2.3 is able to reproduce the observed peak structure at around 1.5–2.5 TeV. In this paper, we report the measurement relative to the production of forward neutrons in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ obtained using the LHCf Arm2 detector at the Large Hadron Collider. The results for the inclusive differential production cross section are presented as a function of energy in three different pseudorapidity regions: $\eta > 10.76$, $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$. The analysis was performed using a data set acquired in June 2015 that corresponds to an integrated luminosity of $\mathrm{0.194~nb^{-1}}$. The measurements were compared with the predictions of several hadronic interaction models used to simulate air showers generated by Ultra High Energy Cosmic Rays. None of these generators showed good agreement with the data for all pseudorapidity intervals. For $\eta > 10.76$, no model is able to reproduce the observed peak structure at around $\mathrm{5~TeV}$ and all models underestimate the total production cross section: among them, QGSJET II-04 shows the smallest deficit with respect to data for the whole energy range. For $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$, the models having the best overall agreement with data are SIBYLL 2.3 and EPOS-LHC, respectively: in particular, in both regions SIBYLL 2.3 is able to reproduce the observed peak structure at around $\mathrm{1.5-2.5~TeV}$.
- Published
- 2018
- Full Text
- View/download PDF
22. The Resent Results from the LHCf Experiment
- Author
-
N. Sakurai, Hiroaki Menjo, Takashi Sako, S. B. Ricciarini, M. Ueno, P. Papini, Yutaka Matsubara, Shoji Torii, Maurice Haguenauer, E. Matsubayashi, Y. Makino, Alessia Tricomi, Taishi Iwata, Raffaello D'Alessandro, Alessio Tiberio, Kenta Sato, Q. D. Zhou, Yoshitaka Itow, Massimo Bongi, Eugenio Berti, Y. Shimizu, Katsuaki Kasahara, T. Tamura, Kenji Yoshida, Yasushi Muraki, Maiko Shinoda, Lorenzo Bonechi, Bill Turner, Kimiaki Masuda, Takuya Suzuki, O. Adriani, G. Castellini, and École polytechnique (X)
- Subjects
Astrophysics and Astronomy ,p p: scattering ,Photon ,air ,Astrophysics::High Energy Astrophysical Phenomena ,energy spectrum ,Cosmic ray ,Hadronic interaction models ,01 natural sciences ,7. Clean energy ,spectrum ,Nuclear physics ,0103 physical sciences ,Energy spectrum ,Nuclear Experiment ,010306 general physics ,Neutral particle ,hadron hadron: interaction ,Physics ,UHECRs ,showers: atmosphere ,010308 nuclear & particles physics ,photon ,LHC-F ,neutral particle ,CERN LHC Coll ,cosmic radiation ,LHC ,numerical calculations: Monte Carlo ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; The LHCf experiment is an LHC experiment dedicated to measure the production spectra of forward neutral particles, photons, \(\pi ^{0}\)s and neutrons. The obtained results are very useful to test hadronic interaction models which are used in MC simulations for cosmic-ray air shower developments. The LHCf had an operation in 2015 with p–p collisions at \(\sqrt{s} \) = 13 TeV, which corresponds to the collision energy of 0.9 × 10^17 eV in the laboratory frame. We discuss the results of the inclusive energy spectra for forward photons obtained at p–p, \(\sqrt{s} \) = 13 TeV data as well as \(\pi ^{0}\) results taken at p–p, \(\sqrt{s} \) = 7 TeV. In addition we introduce future prospects of LHCf analyses and activities.
- Published
- 2018
- Full Text
- View/download PDF
23. Measurement of very forward particle production at RHIC with √ s=510 GeV proton-proton collisions
- Author
-
Takashi Sako, Hiroaki Menjo, Raffaello D'Alessandro, N. Sakurai, Kenta Sato, Kiyoshi Tanida, Y. Goto, Qigong D. Zhou, O. Adriani, Lorenzo Bonechi, J. S. Park, Yoshitaka Itow, T. Suzuki, M. Ueno, Alessia Tricomi, M. H. Kim, R. Seidl, I. Nakagawa, Eugenio Berti, Katsuaki Kasahara, Maiko Shinoda, and S. Torii
- Subjects
Physics ,Large Hadron Collider ,Proton ,Meson ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Hadron ,Asymmetry ,Nuclear physics ,Air shower ,Nuclear Experiment ,Relativistic Heavy Ion Collider ,Energy (signal processing) ,media_common - Abstract
The Relativistic Heavy Ion Collider forward (RHICf) experiment has measured neutral particles produced in the very forward direction in the √s=510 GeV proton-proton collisions at RHIC in June 2017. The production cross sections of these particles are crucial to understand the hadronic interaction relevant to the air shower development at the cosmic-ray equivalent energy of 1.4×10$^{14}$ eV, just below the energy of the knee. Together with the data at LHC, accelerator data can cover the interaction in the cosmic-ray energy of 10$^{14}$ eV to 10$^{17}$ eV. In addition, RHICf is able to improve the former measurements of single-spin asymmetry in the polarized proton- proton collisions that is sensitive to the fundamental process of the meson exchange. Common data taking with the STAR experiment will shed light on the unexplored low mass diffraction process.
- Published
- 2018
24. Monte Carlo study of diffraction in proton-proton collisions at $\sqrt{s}$=13TeV with the very forward detector
- Author
-
Hiroaki Menjo, Q. D. Zhou, Yoshitaka Itow, and Takashi Sako
- Subjects
Diffraction ,Nuclear physics ,Physics ,Proton ,010308 nuclear & particles physics ,0103 physical sciences ,Detector ,Hadron ,Monte Carlo method ,Physics::Optics ,High Energy Physics::Experiment ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
Diffractive and non-diffractive collisions are totally different hadronic interaction processes, the diffractive processes are hardly predicted theoretically. This leads to the significant differences in the treatments of diffraction in the hadronic interaction models. Very forward detectors at colliders have unique sensitivity to diffractive processes, and they can be a powerful tool for studying diffractive dissociation by combining them with central detectors. Central information enables classification of the forward productions into diffraction and nondiffraction categories; in particular, most of the surviving events from the selection of diffraction belong to low-mass diffraction events which have not been measured precisely.
- Published
- 2017
- Full Text
- View/download PDF
25. Performance study for the photon measurements of the upgraded LHCf calorimeters with Gd$_2$SiO$_5$ (GSO) scintillators
- Author
-
Hiroaki Menjo, Yoshitaka Itow, Katsuaki Kasahara, Alessio Tiberio, T. Iwata, W. C. Turner, Takashi Sako, S. B. Ricciarini, Massimo Bongi, P. Papini, Eugenio Berti, Kimiaki Masuda, E. Matsubayashi, Yasushi Muraki, O. Adriani, Alessia Tricomi, Y. Makino, Shoji Torii, N. Sakurai, S. Detti, M. Haguenauer, Q. D. Zhou, M. Ueno, Z. Caccia, G. Mitsuka, Toshiharu Suzuki, Lorenzo Bonechi, T. Tamura, Raffaello D'Alessandro, M. Del Prete, and École polytechnique (X)
- Subjects
Particle physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,energy resolution ,Cosmic ray ,Scintillator ,01 natural sciences ,7. Clean energy ,Particle detector ,Nuclear physics ,Calorimeters ,Hodoscope ,Particle tracking detectors ,0103 physical sciences ,calorimeter ,electron: irradiation ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,Instrumentation ,spatial resolution ,Mathematical Physics ,scintillation counter ,Physics ,CalibrationCosmic ray detectorsCosmic raysCosmologyIntelligent systemsIonizationMonte Carlo methodsPhotonsScintillation countersTellurium compounds ,Large Hadron Collider ,010308 nuclear & particles physics ,hodoscope ,LHC-F ,energy: calibration ,Calorimeter ,Air shower ,muon: irradiation ,Scintillation counter ,High Energy Physics::Experiment ,silicon: oxygen ,photon: detector ,gadolinium ,numerical calculations: Monte Carlo ,performance - Abstract
The Large Hadron Collider forward (LHCf) experiment was motivated to understand the hadronic interaction processes relevant to cosmic-ray air shower development. We have developed radiation-hard detectors with the use of Gd2SiO5 (GSO) scintillators for proton-proton ?s = 13 TeV collisions. Calibration of such detectors for photon measurement has been completed at the CERN SPS T2-H4 line in 2015 using electron beams of 100-250 GeV and muon beams of 150-250 GeV . After the channel-by-channel absolute energy calibration, the energy resolution of the calorimeters is confirmed to be better than 3% for electrons with energy above 100 GeV . The position dependence of the energy scale of the calorimeters was reduced to the level of 1% after the corrections for scintillator nonuniformity and the shower leakage effect. The position resolution of the new shower imaging detector, a GSO-bar hodoscope interleaved in the calorimeter, was 100 ?m for 200 GeV electrons. The experimental results are well explained by Monte Carlo simulations. We have confirmed that the new detectors meet the requirement of the LHCf experiment at ?s = 13 TeV. © 2017 IOP Publishing Ltd and Sissa Medialab srl.
- Published
- 2017
- Full Text
- View/download PDF
26. Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector
- Author
-
N. Sakurai, W. C. Turner, Kimiaki Masuda, E. Matsubayashi, Katsuaki Kasahara, Y. Makino, Takahiro Iwata, Lorenzo Bonechi, M. Haguenauer, O. Adriani, M. Ueno, A. Tiberio, M. Del Prete, Hiroaki Menjo, M. Bongi, Toshiharu Suzuki, Yasushi Muraki, A. L. Perrot, Eugenio Berti, T. Tamura, Takashi Sako, G. Mitsuka, Shoji Torii, S. B. Ricciarini, P. Papini, Q. D. Zhou, Kiyoshi Kawade, Alessia Tricomi, Raffaello D'Alessandro, and Yoshitaka Itow
- Subjects
Particle physics ,Physics and Astronomy (miscellaneous) ,Nuclear Theory ,Hadron ,FOS: Physical sciences ,Cosmic ray ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,symbols.namesake ,Pion ,0103 physical sciences ,Feynman diagram ,Rapidity ,Nuclear Experiment ,010306 general physics ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Detector ,Transverse plane ,symbols ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Particle Physics - Experiment - Abstract
The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers., Comment: 47 pages, 23 figures, 59 tables, accepted in PRD
- Published
- 2016
- Full Text
- View/download PDF
27. Measurements of very forward particles production spectra at LHC: the LHCf experiment
- Author
-
Qi Dong Zhou, Yasushi Muraki, S. Torii, Raffaello D'Alessandro, O. Adriani, E. Matsubayashi, Takashi Sako, S. B. Ricciarini, Y. Makino, Massimo Bongi, Eugenio Berti, Paolo Papini, Maurice Haguenauer, Alessio Tiberio, Hiroaki Menjo, Alessia Tricomi, T. Iwata, M. Ueno, Tadahisa Tamura, Lorenzo Bonechi, Takuya Suzuki, G. Castellini, W. C. Turner, Kimiaki Masuda, Katsuaki Kasahara, Yoshitaka Itow, and École polytechnique (X)
- Subjects
Physics ,13.85.-t ,High energy ,energy: high ,Large Hadron Collider ,CERN Lab ,interaction: model ,Hadron ,Interaction model ,Cosmic ray ,LHC-F ,Spectral line ,Calorimeter ,p nucleon: interaction ,talk: Lund 2016/06/13 ,Nuclear physics ,CERN LHC Coll ,cosmic radiation ,calorimeter ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Particle Physics - Experiment ,neutral particle: hadroproduction ,13.85.Tp ,experimental results - Abstract
International audience; Thanks to two small sampling calorimeters installed in the LHC tunnel at ±140 m from IP1, the LHC forward (LHCf) experiment is able to detect neutral particles produced by high energy proton-ion collisions in the very forward region (pseudo-rapidity η > 8.4). The main aim of LHCf is to provide precise measurements of the production spectra relative to these particles, in order to tune hadronic interaction models used by ground-based cosmic rays experiments. In this paper we will present the current status of the LHCf experiment, regarding in particular collected data and analysis results, as well as future prospects
- Published
- 2016
- Full Text
- View/download PDF
28. The performance for the TeV photon measurement of the LHCf upgraded detector using Gd 2 SiO 5 (GSO) scintillators
- Author
-
Shoji Torii, M. Ueno, Katsuaki Kasahara, M. Bongi, Hiroaki Menjo, Q. D. Zhou, W. C. Turner, E. Matsubayashi, Kimiaki Masuda, Raffaello D'Alessandro, Y. Makino, M. Haguenauer, T. Iwata, Yoshitaka Itow, Yasushi Muraki, Eugenio Berti, G. Castellini, O. Adriani, Takashi Sako, S. B. Ricciarini, P. Papini, Alessia Tricomi, Lorenzo Bonechi, T. Tamura, A. Tiberio, T. Suzuki, and École polytechnique (X)
- Subjects
Particle physics ,Nuclear and High Energy Physics ,Photon ,Physics::Instrumentation and Detectors ,Instrumentation ,energy resolution ,Scintillator ,7. Clean energy ,01 natural sciences ,Calorimeters ,Colliding beam accelerators ,Ionization ,Tellurium compounds Air shower experiments ,Electro-magnetic showers ,Hadronic interaction models ,Integrated luminosity ,Irradiation conditions ,Large Hadron Collider ,Sampling calorimeters ,UHECRs ,Nuclear physics ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,Image resolution ,spatial resolution ,Sampling calorimeter ,GSO ,Physics ,Luminosity (scattering theory) ,irradiation ,010308 nuclear & particles physics ,Scintillating detector ,Detector ,mass resolution ,LHC-F ,stability ,calibration ,GSO, Sampling calorimeter, Scintillating detector, UHECRs, Nuclear and High Energy Physics, Instrumentation ,Air shower ,scintillation counter: crystal ,High Energy Physics::Experiment ,silicon: oxygen ,calorimeter: upgrade ,gadolinium ,performance - Abstract
International audience; The Large Hadron Collider forward (LHCf) experiment measures the forward particle production at the LHC to verify hadronic interaction models used in air shower experiments. We have upgraded very small sampling and imaging calorimeters using GSO scintillators to measure the most energetic particles generated in s =13 TeV p–p collisions at the zero-degree region of the LHC. Upgraded detectors were calibrated at the SPS North area facility in CERN and it was confirmed that the detector can measure electro-magnetic showers with energy resolution of 3% and position resolution of better than 123 μm for 100 GeV electrons. The operation of LHCf in 13 TeV p–p collisions has been successfully completed with integrated luminosity of 5 nb −1 . Reconstructed π 0 peak with the mass resolution of 3.7% and stability less than 1% during the operation implies that our measurement was stable enough in the high irradiation condition.
- Published
- 2016
- Full Text
- View/download PDF
29. Measurement of zero degree inclusive photon energy spectra for s=900GeV proton–proton collisions at LHC
- Author
-
T. Tamura, Raffaello D'Alessandro, K. Fukatsu, Lorenzo Bonechi, Yasushi Muraki, W. C. Turner, T. Mase, Toshiharu Suzuki, M. Bongi, Kimiaki Masuda, Yoshitaka Itow, K. Taki, Hiroaki Menjo, A. L. Perrot, K. Kasahara, S. B. Ricciarini, Alessia Tricomi, P. Papini, Koji Noda, Shoji Torii, O. Adriani, G. Castellini, M. Haguenauer, T. K. Sako, Kiyoshi Kawade, T. Iso, G. Mitsuka, and K. Suzuki
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Proton ,Pseudorapidity ,Hadron ,Cosmic ray ,Ultra-high-energy cosmic ray ,Photon energy ,Spectral line - Abstract
The inclusive photon energy spectra measured by the Large Hadron Collider forward (LHCf) experiment in the very forward region of LHC proton–proton collisions at s = 900 GeV are reported. The results from the analysis of 0.30 nb−1 of data collected in May 2010 in the two pseudorapidity regions of η > 10.15 and 8.77 η 9.46 are compared with the predictions of the hadronic interaction models DPMJET 3.04, EPOS 1.99, PYTHIA 8.145, QGSJET II-03 and SIBYLL 2.1, which are widely used in ultra-high energy cosmic ray experiments. EPOS 1.99 and SIBYLL 2.1 show a reasonable agreement with the spectral shape of the experimental data, whereas they predict lower cross-sections than the data. The other models, DPMJET 3.04, QGSJET II-03 and PYTHIA 8.145, are in good agreement with the data below 300 GeV but predict harder energy spectra than the data above 300 GeV. The results of these comparisons exhibited features similar to those for the previously reported data for s = 7 TeV collisions.
- Published
- 2012
- Full Text
- View/download PDF
30. Measurement of zero degree single photon energy spectra for s=7 TeV proton–proton collisions at LHC
- Author
-
Katsuaki Kasahara, W. C. Turner, T. Mase, Kimiaki Masuda, A. Viciani, Toshiharu Suzuki, K. Taki, K. Fukatsu, Yasushi Shimizu, Kenji Yoshida, Hiroaki Menjo, T. Tamura, D. Macina, Alessia Tricomi, A. Faus, Koji Noda, Yasushi Muraki, K. Suzuki, M. Nakai, Shoji Torii, Yoshitaka Itow, M. Bongi, Kentaro Kawade, O. Adriani, Takashi Sako, S. B. Ricciarini, P. Papini, A. L. Perrot, M. Haguenauer, G. Castellini, G. Mitsuka, J. Velasco, Raffaello D'Alessandro, Yutaka Matsubara, and Lorenzo Bonechi
- Subjects
Massless particle ,Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Photon ,Large Hadron Collider ,Hadron ,High Energy Physics::Experiment ,Elementary particle ,Rapidity ,Photon energy ,Neutral particle - Abstract
In early 2010, the Large Hadron Collider forward (LHCf) experiment measured very forward neutral particle spectra in LHC proton–proton collisions. From a limited data set taken under the best beam conditions (low beam-gas background and low occurrence of pile-up events), the single photon spectra at s = 7 TeV and pseudo-rapidity (η) ranges from 8.81 to 8.99 and from 10.94 to infinity were obtained for the first time and are reported in this Letter. The spectra from two independent LHCf detectors are consistent with one another and serve as a cross check of the data. The photon spectra are also compared with the predictions of several hadron interaction models that are used extensively for modeling ultra-high energy cosmic-ray showers. Despite conservative estimates for the systematic errors, none of the models agree perfectly with the measurements. A notable difference is found between the data and the DPMJET 3.04 and PYTHIA 8.145 hadron interaction models above 2 TeV where the models predict higher photon yield than the data. The QGSJET II-03 model predicts overall lower photon yield than the data, especially above 2 TeV in the rapidity range 8.81 η 8.99 .
- Published
- 2011
- Full Text
- View/download PDF
31. Transverse single spin asymmetry for very forward π0 production in polarized proton-proton collisions at √s = 510 GeV
- Author
-
M. H. Kim, Hiroaki Menjo, R. Seidl, Emanuele Berti, Kenta Sato, O. Adriani, Takashi Sako, M. Ueno, K. Kasahara, I. Nakagawa, Y. Goto, J. S. Park, Alessia Tricomi, N. Sakurai, Lorenzo Bonechi, Byung-Sik Hong, Kiyoshi Tanida, Q. D. Zhou, Toshiharu Suzuki, Raffaello D'Alessandro, Shoji Torii, and Yoshitaka Itow
- Subjects
Physics ,Range (particle radiation) ,Proton ,QC1-999 ,media_common.quotation_subject ,High Energy Physics::Phenomenology ,Asymmetry ,Nuclear physics ,Transverse plane ,Pseudorapidity ,Transverse momentum ,High Energy Physics::Experiment ,Nuclear Experiment ,Spin-½ ,media_common - Abstract
Transverse single spin asymmetry, AN, of very forward π0 production from polarized p + p collisions provides new information toward an understanding of its production mechanism. AN of forward π0 in the pseudorapidity region of 3 < η < 4 has been described by the partonic structure of the proton in the perturbative QCD framework. However, recent data indicates a potential contribution from not only partonic but also diffractive interactions. In order to provide a new insight on the origin of the AN, we measured the very forward π0 production in the pseudorapidity region of 6 < η from √s = 510 GeV polarized p + p collisions at RHIC in 2017. We report our measurement of the very forward π0 over the transverse momentum range of 0 < pT < 1 GeV/c and the preliminary result.
- Published
- 2019
- Full Text
- View/download PDF
32. Recent results from the LHCf and RHICf experiments
- Author
-
W. C. Turner, Kenta Sato, Kimiaki Masuda, Kiyoshi Tanida, Hiroaki Menjo, Lorenzo Bonechi, Shoji Torii, I. Nakagawa, O. Adriani, Q. D. Zhou, M. H. Kim, R. Seidl, N. Sakurai, M. Bongi, Raffaello D'Alessandro, A. Tiberio, Byung-Sik Hong, M. Ueno, K. Kasahara, Toshiharu Suzuki, Y. Goto, M. Haguenauer, J. S. Park, Alessia Tricomi, T. Tamura, Yasushi Muraki, Ken Ohashi, Eugenio Berti, Yoshitaka Itow, Takashi Sako, S. B. Ricciarini, P. Papini, École polytechnique (X), LHCf, and RHICf
- Subjects
Astrophysics and Astronomy ,heavy ion: scattering ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Cosmic ray ,01 natural sciences ,7. Clean energy ,talk: Nagoya 2018/05/21 ,Nuclear physics ,0103 physical sciences ,calorimeter ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Rapidity ,Nuclear Experiment ,010306 general physics ,neutral particle: particle identification ,Brookhaven RHIC Coll ,Physics ,Large Hadron Collider ,showers: atmosphere ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,LHC-F ,Calorimeter ,rapidity ,forward production ,CERN LHC Coll ,Air shower ,cosmic radiation ,High Energy Physics::Experiment ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Relativistic Heavy Ion Collider ,performance ,Particle Physics - Experiment ,experimental results - Abstract
The Large Hadron Collider forward and the Relativistic Heavy Ion Collider forward experiments measured forward particles produced in high-energy hadron collisions at the LHC and RHIC. Using compact calorimeters neutral particles produced in pseudorapidities η >8.4 and η >6.0 are observed by the respective experiments. Because the collision energies ranging from 0.51 TeV to 13 TeV correspond to the cosmic-ray equivalent energies of 1014 to 1017 eV, the measurements are important to understand the hadronic interaction relevant to extensive air shower measurements. This paper reviews recent results of LHCf and initial performance of RHICf that took data in the 2017 RHIC operation.
- Published
- 2019
- Full Text
- View/download PDF
33. Astroparticle physics at LHC: The LHCf experiment ready for data taking
- Author
-
D. Macina, W. C. Turner, K. Taki, Katsuaki Kasahara, T. Mase, Kimiaki Masuda, Alessia Tricomi, Yoshitaka Itow, Yasushi Muraki, Y. Shimizu, M. Mizuishi, Kenji Yoshida, D. A. Faus, G. Castellini, L. Bonechi, Raffaello D'Alessandro, M. Haguenauer, K. Fukui, O. Adriani, M. Bongi, J. Velasco, T. Tamura, Hiroaki Menjo, Takashi Sako, S. B. Ricciarini, Shoji Torii, P. Papini, A. L. Perrot, Yutaka Matsubara, A. Viciani, and M. Grandi
- Subjects
Astroparticle physics ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Interaction point ,Astrophysics::High Energy Astrophysical Phenomena ,Beam commissioning ,Collision ,Nuclear physics ,Nuclear interaction ,Monte carlo code ,Ultra-high-energy cosmic ray ,Instrumentation - Abstract
LHCf is a high-energy physics experiment designed to study the forward production of neutral particles in proton–proton collisions at the LHC. The set-up consists of two small calorimetric systems symmetrically placed 140 m away on both the sides of the ATLAS interaction point. Results from the experiment will provide valuable information to the calibration of the nuclear interaction models used in the Monte Carlo codes for air-shower simulations, which are of great importance for present and future ground-based cosmic-ray experiments. In particular, since LHCf will start taking data in the first phase of operation of the LHC (during the beam commissioning phase at 5 + 5 TeV energy) and will complete its data taking at the beginning of the 7 + 7 TeV runs (laboratory equivalent collision energy 10 17 eV ), it will span an energy range up to the region between the “knee” and the GZK cut-off of the cosmic-ray spectrum.
- Published
- 2010
- Full Text
- View/download PDF
34. Status of the LHCf apparatus at LHC
- Author
-
K. Taki, A. L. Perrot, Yoshimi Matsubara, Shoji Torii, Hiroaki Menjo, Alessia Tricomi, M. Bongi, M. Haguenauer, Katsuaki Kasahara, D. Macina, M. Mizuishi, Takashi Sako, S. B. Ricciarini, P. Papini, K. Fukui, O. Adriani, W. C. Turner, G. Castellini, L. Bonechi, T. Mase, Kimiaki Masuda, Yasushi Muraki, Raffaello D'Alessandro, Yoshitaka Itow, Kenji Yoshida, A. Viciani, Y. Shimizu, J. Velasco, T. Tamura, and A. Faus
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,Nuclear engineering ,Detector ,Physics::Accelerator Physics ,Control software ,Atomic and Molecular Physics, and Optics ,Beam (structure) - Abstract
The LHCf experiment at the LHC accelerator is ready for data taking. Both the LHCf detectors have been successfully tested and installed in their running configuration. The status of the apparatus, control software and some results of the last beam test at the SPS accelerator are presented in this work.
- Published
- 2009
- Full Text
- View/download PDF
35. The LHCf experiment at the LHC: Physics Goals and Status
- Author
-
Yoshimi Matsubara, G. Castellini, L. Bonechi, W. C. Turner, T. Mase, Kimiaki Masuda, K. Taki, Kenji Yoshida, A. Viciani, M. Mizuishi, M. Bongi, Hiroaki Menjo, T. Tamura, J. Velasco, Raffaello D'Alessandro, Yasushi Muraki, Katsuaki Kasahara, A. Faus, Y. Shimizu, K. Fukui, O. Adriani, A. L. Perrot, Yoshitaka Itow, Alessia Tricomi, Shoji Torii, D. Macina, Takashi Sako, S. B. Ricciarini, P. Papini, and M. Haguenauer
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Range (particle radiation) ,Large Hadron Collider ,Spectrometer ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Cosmic ray ,Atomic and Molecular Physics, and Optics ,Particle detector ,Particle identification ,Nuclear physics ,Measuring instrument ,High Energy Physics::Experiment - Abstract
The LHCf experiment is the smallest of the six experiments installed at the Large Hadron Collider (LHC). While the general purpose detectors have been mainly designed to answer the open questions of Elementary Particle Physics, LHCf has been designed as a fully devoted Astroparticle experiment at the LHC. Indeed, thanks to the excellent performances of its double arm calorimeters, LHCf will be able to measure the flux of neutral particles produced in p-p collisions at LHC in the very forward region, thus providing an invaluable help in the calibration of air-shower Monte Carlo codes currently used for modeling cosmic rays interactions in the Earth atmosphere. Depending on the LHC machine schedule, LHCf will take data in an energy range from 900 GeV up to 14 TeV in the centre of mass system (equivalent to 10 17 eV in the laboratory frame), thus covering one of the most interesting and debated region of the Cosmic Ray spectrum, the region around and beyond the “knee”.
- Published
- 2009
- Full Text
- View/download PDF
36. LHCf experiment: Forward physics at LHC for cosmic rays study
- Author
-
O. Adriani, T. Tamura, Lorenzo Bonechi, Alessia Tricomi, E. Matsubayashi, Y. Makino, Alessio Tiberio, Shoji Torii, Raffaello D'Alessandro, M. Haguenauer, G. Mitsuka, Takashi Sako, S. B. Ricciarini, P. Papini, Q. D. Zhou, M. Bongi, Eugenio Berti, Toshiharu Suzuki, G. Castellini, Y. Okuno, M. Del Prete, N. Sakurai, W. C. Turner, Kimiaki Masuda, Hiroaki Menjo, Y. Sugiura, Kiyoshi Kawade, Yasushi Muraki, Katsuaki Kasahara, A. L. Perrot, and Yoshitaka Itow
- Subjects
Physics ,Astrophysics and Astronomy ,Future perspective ,Particle properties ,Large Hadron Collider ,010308 nuclear & particles physics ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Nuclear Theory ,Cosmic ray ,Astrophysics ,01 natural sciences ,Nuclear physics ,Physics and Astronomy (all) ,neutron ,cosmic rays ,0103 physical sciences ,Physics::Accelerator Physics ,Ultra-high-energy cosmic ray ,010306 general physics ,Nuclear Experiment ,Energy (signal processing) ,Particle Physics - Experiment - Abstract
The LHCf experiment, optimized for the study of forward physics at LHC, completes its main physics program in this year 2015, with the proton-proton collisions at the energy of 13 TeV. LHCf gives important results on the study of neutral particles at extreme pseudo-rapidity, both for proton-proton and for proton-ion interactions. These results are an important reference for tuning the models of the hadronic interaction currently used for the simulation of the atmospheric showers induced by very high energy cosmic rays. The results of this analysis and the future perspective are presented in this paper.
- Published
- 2016
37. Performance of the prototype detector for the LHCf experiment
- Author
-
M. Haguenauer, Katsuaki Kasahara, J. Velasco, T. Tamura, Hiroaki Menjo, Lorenzo Bonechi, W. C. Turner, Yutaka Matsubara, M. Bongi, Kimiaki Masuda, A. Faus, O. Adriani, K. Tanaka, Y. Obata, Takashi Sako, Hironori Matsumoto, Kenji Yoshida, Yoshitaka Itow, Yasushi Muraki, and Shoji Torii
- Subjects
[PACS] Elementary particle processes ,Nuclear and High Energy Physics ,Particle physics ,[PACS] Neutrino, muon, pion, and other elementary particle detectors ,cosmic ray detectors ,Physics::Instrumentation and Detectors ,Monte Carlo method ,Large Hadron Collider (LHC) ,High-energy cosmic-rays ,Nuclear physics ,cosmic rays ,Hodoscope ,Spectrum ,Calibration ,[PACS] Neutrino, muon, pion, and other elementary particles ,Sampling calorimeter ,Instrumentation ,Physics ,Large Hadron Collider ,Interaction point ,Detector ,Beamline ,[PACS] Cosmic-ray interactions ,Beam (structure) - Abstract
14 pages, 11 figures.-- PACS nrs.: 13.85.Tp; 95.30.Cq; 95.55.Vj; 95.85.Ry.-- ISI Article Identifier: 000248784500012, LHCf is a compact experiment for measuring the energy and transverse momentum spectra of the neutral particles emitted in the high rapidity range at an LHC interaction point. The data obtained by LHCf will set a crucial anchor point for calibration of the interaction models used in studies of high-energy cosmic-rays. In this paper, we report results of a beam test of an LHCf prototype detector that was carried out in July-August 2004 at the CERN SPS H4 beamline. We measured electromagnetic showers generated by 50-200 GeV electron primary beams and obtained 3-5% energy resolution as a function of the primary energy. The measured resolution is in good agreement with Monte Carlo simulations. The position resolution of SciFi hodoscope for measurement of the shower axis, 0.12-0.17 mm, was slightly worse than the MC expectation but adequate for the requirements of LHCf. This study gives a firm foundation for final design and fabrication of the LHCf detectors which will be installed in LHC in 2007 and operational in the early stages of LHC commissioning., This work is partly supported by Grant-in-Aid for Scientific Research (B:16403003), Grant-in-Aid for Scientific Research on Priority Areas (Highest Cosmic Rays: 15077205) and Grant-in-Aid for Young Scientists (B:18740141), by the Ministry of Education, Culture, Sports, and Technology (MEXT) of Japan.
- Published
- 2007
- Full Text
- View/download PDF
38. High precision 14C measurements and wiggle-match dating of tree rings at Nagoya University
- Author
-
Katsuhiko Kimura, Etsuko Niu, Mitsuru Okuno, Hiroko Miyahara, Hiroaki Menjo, Hirotaka Oda, Kohsuke Kuwana, Toshio Nakamura, Kimiaki Masuda, Tomoko Ohta, Andrzej Z. Rakowski, Masayo Minami, and Akiko Ikeda
- Subjects
Data set ,Nuclear and High Energy Physics ,Tree (data structure) ,Consistency (statistics) ,Calibration (statistics) ,Analytical chemistry ,Dendrochronology ,Wiggle matching ,Geodesy ,Instrumentation ,Standard deviation ,Mathematics ,Accelerator mass spectrometry - Abstract
An AMS system dedicated to 14C measurement (486-AMS) built by HVEE B.V. The Netherlands, was delivered to Nagoya University in 1996, and is in use for routine 14C measurements. The relative error of the standard deviation (1σ) of 14C/12C ratios is ±0.3% to ±0.5% (somewhat larger than the uncertainty of ±0.3% from 14C counting statistics) and that of the corresponding 13C/12C ratios is ±0.03% to ±0.07%, as measured for HOxII standards. By using this AMS system, we are now testing whether the recommended IntCal04 14C calibration data set is consistent with the natural 14C-concentration variations as recorded in Japanese trees. Here we report the results of these consistency tests and accurate age determination of tree rings grown in Japan, using the 14C wiggle matching technique.
- Published
- 2007
- Full Text
- View/download PDF
39. Cyclicity of Solar Activity During the Maunder Minimum Deduced from Radiocarbon Content
- Author
-
Hiroaki Menjo, Toshio Nakamura, Yasushi Muraki, Kimiaki Masuda, Hideki Furuzawa, and Hiroko Miyahara
- Subjects
Polarity reversal ,Physics ,Sunspot ,Meteorology ,Astronomy and Astrophysics ,Astrophysics ,law.invention ,Space and Planetary Science ,law ,Content (measure theory) ,Dendrochronology ,Radiocarbon dating ,Inverse correlation ,Cycle length - Abstract
This paper presents the features of the “eleven-year” cycle of radiocarbon content during the period of prolonged sunspot minimum called the Maunder Minimum (1645–1715 AD). Whether or not the Sun had maintained the cyclic polarity reversal even during the Maunder Minimum has been a controversial topic for a long time. Although persistency of the cyclicity has been investigated by using cosmogenic isotopes or by calculations, a consistent description has not been obtained so far. Hence, we have obtained a new record of carbon-14 content in tree rings from 1631–1739 AD, and made a comparison with the record previously obtained. Periods of 13–15 and 24–29 years detected in the variation of carbon-14 content seem to be suggesting that the Sun had retained periodic polarity reversal during this prolonged minimum with slightly longer periodicity than that of recent intense solar activity. Our results seem to support the inverse correlation between the intensity and the cycle length of solar activity.
- Published
- 2004
- Full Text
- View/download PDF
40. Variation of the Radiocarbon Content in Tree Rings During the Spoerer Minimum
- Author
-
Yasushi Muraki, Hideki Furuzawa, Hiroaki Menjo, Hiroko Miyahara, Toshio Nakamura, Hiroyuki Kitagawa, and Kimiaki Masuda
- Subjects
010506 paleontology ,Archeology ,Sunspot ,060102 archaeology ,06 humanities and the arts ,01 natural sciences ,C content ,law.invention ,law ,Climatology ,Content (measure theory) ,Dendrochronology ,General Earth and Planetary Sciences ,0601 history and archaeology ,Radiocarbon dating ,Tree (set theory) ,Variation (astronomy) ,Geology ,Holocene ,0105 earth and related environmental sciences - Abstract
This paper presents the variation of radiocarbon content in annual tree rings for the period AD 1413–1553, which includes the Spoerer Minimum period (AD 1415–1534). Since the variation of the production rate of 14C is strongly related to solar activity, the variation of 14C content in annual tree rings gives us information on the characteristics of variation of solar activity. We have studied solar activity during the grand solar minima, focusing especially on the stability of the 11-yr cycle. The minima are determined to have been almost free of sunspots. Our results, however, have revealed quite remarkably the existence of the 11-yr cycle for most of the time during the Spoerer Minimum. The 11-yr variation weakened around AD 1460–1510, suggesting that solar activity might have been strongly suppressed during these 50 yr.
- Published
- 2004
- Full Text
- View/download PDF
41. Latest LHCf results and preparation to the LHC run for 13 TeV proton–proton interactions
- Author
-
Yasushi Muraki, Yoshitaka Itow, Toshiharu Suzuki, Kenji Yoshida, E. Matsubayashi, Y. Makino, W. C. Turner, Kimiaki Masuda, Hiroaki Menjo, T. Tamura, Raffaello D'Alessandro, Y. Sugiura, Alessia Tricomi, Massimo Bongi, G. Castellini, Eugenio Berti, G. Mitsuka, M. Del Prete, O. Adriani, M. Haguenauer, A. L. Perrot, Shoji Torii, Yasushi Shimizu, Katsuaki Kasahara, Yoshimi Matsubara, T. K. Sako, Q. D. Zhou, Y. Okuno, S. B. Ricciarini, N. Sakurai, P. Papini, Alessio Tiberio, and Lorenzo Bonechi
- Subjects
Physics ,COLLISIONS ,Particle physics ,PHOTON ENERGY-SPECTRA ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,QC1-999 ,Hadron ,PHOTON ENERGY-SPECTRA, COLLISIONS ,Nuclear physics ,Upgrade ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Neutral particle ,Particle Physics - Experiment - Abstract
The LHCf experiment is a CERN experiment dedicated to forward physics which is optimized to measure the neutral particle flow at extreme pseudo-rapidity val- ues, ranging from 8.4 up to infinity. LHCf results are extremely important for the cal- ibration of the hadronic interaction models used for the study of the development of atmospheric showers in the Earth atmosphere. Starting from the recent run of proton- Lead nucleus interactions at LHC, the LHCf and ATLAS collaborations have performed a common data taking which allows a combined study of the central and forward re- gions of the interaction. The latest results of LHCf, the upgrade of the detectors for the next 6.5 TeV + 6.5 TeV proton-proton run and the status of the LHCf-ATLAS common activities are summarized in this paper.
- Published
- 2015
42. Measurement of very forward neutron energy spectra for 7 TeV proton-proton collisions at the Large Hadron Collider
- Author
-
Hiroaki Menjo, Yasushi Muraki, Shoji Torii, E. Matsubayashi, M. Bongi, Katsuaki Kasahara, Y. Makino, M. Haguenauer, Q. D. Zhou, Y. Sugiura, Takashi Sako, O. Adriani, S. B. Ricciarini, Alessia Tricomi, Eugenio Berti, Raffaello D'Alessandro, M. Del Prete, Lorenzo Bonechi, P. Papini, W. C. Turner, Yoshitaka Itow, G. Mitsuka, Kimiaki Masuda, Alessio Tiberio, Toshiharu Suzuki, T. Tamura, G. Castellini, Y. Okuno, N. Sakurai, Kentaro Kawade, and A. L. Perrot
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Range (particle radiation) ,Photon ,Large Hadron Collider ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,lcsh:QC1-999 ,Neutron temperature ,High Energy Physics - Experiment ,Calorimeter ,Hadronic-interaction model ,Nuclear physics ,Baryon ,High Energy Physics - Experiment (hep-ex) ,Forward neutron production ,Neutron ,LHC ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,lcsh:Physics ,Particle Physics - Experiment - Abstract
The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models., Comment: 10pages, 6 figures
- Published
- 2015
- Full Text
- View/download PDF
43. Transverse-momentum distribution and nuclear modification factor for neutral pions in the forward-rapidity region in proton-lead collisions atsNN=5.02TeV
- Author
-
Hiroaki Menjo, Alessio Tiberio, G. Mitsuka, O. Adriani, K. Kasahara, Yoshitaka Itow, Dorothea Pfeiffer, S. B. Ricciarini, M. Del Prete, T. K. Sako, P. Papini, Toshiharu Suzuki, Kiyoshi Kawade, E. Matsubayashi, Y. Makino, N. Sakurai, Alessia Tricomi, G. Castellini, Raffaello D'Alessandro, T. Tamura, Yasushi Muraki, M. Haguenauer, Lorenzo Bonechi, Shoji Torii, W. C. Turner, Massimo Bongi, Eugenio Berti, Kimiaki Masuda, and A. L. Perrot
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Proton ,Nuclear Theory ,Monte Carlo method ,Hadron ,Spectral line ,Nuclear physics ,Pion ,High Energy Physics::Experiment ,Production (computer science) ,Rapidity ,Nuclear Experiment - Abstract
The transverse momentum ($p_\text{T}$) distribution for inclusive neutral pions in the very forward rapidity region has been measured, with the Large Hadron Collider forward detector (LHCf), in proton--lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_{NN}} = 5.02$TeV at the LHC. The $p_\text{T}$ spectra obtained in the rapidity range $-11.0 < y_\text{lab} < -8.9$ and $0 < p_\text{T} < 0.6$GeV (in the detector reference frame) show a strong suppression of the production of neutral pions after taking into account ultra-peripheral collisions. This leads to a nuclear modification factor value, relative to the interpolated $p_\text{T}$ spectra in proton-proton collisions at $\sqrt{s} = 5.02$TeV, of about 0.1--0.4. This value is compared with the predictions of several hadronic interaction Monte Carlo simulations.
- Published
- 2014
- Full Text
- View/download PDF
44. Recent Results from the LHCf Experiment
- Author
-
Hiroaki Menjo, Dorothea Pfeiffer, Toshiharu Suzuki, G. Mitsuka, E. Matsubayashi, Y. Makino, Katsuaki Kasahara, A. L. Perrot, Y. Sugiura, M. Bongi, A. Tiberio, Y. Shimizu, Yoshitaka Itow, N. Sakurai, Raffaello D'Alessandro, Takashi Sako, S. B. Ricciarini, Q. D. Zhou, P. Papini, O. Adriani, M. Del Prete, Lorenzo Bonechi, Yasushi Muraki, Eugenio Berti, Shoji Torii, W. C. Turner, Kimiaki Masuda, T. Tamura, M. Haguenauer, G. Castellini, Kiyoshi Kawade, Alessia Tricomi, and École polytechnique (X)
- Subjects
Photon ,interaction: model ,Physics::Instrumentation and Detectors ,p nucleus: interaction ,Hadron ,Nuclear Theory ,Astrophysics ,7. Clean energy ,01 natural sciences ,Spectral line ,transverse momentum: momentum spectrum ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,cosmic radiation: VHE ,Nuclear Experiment ,Physics ,Large Hadron Collider ,pi0: forward production ,talk: Chiba 2014/03/19 ,UHECR ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,photon: energy spectrum: measured ,7000 GeV-cms ,Particle Physics - Experiment ,photon: forward production ,p p: scattering ,5000 GeV-cms/nucleon ,air ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Nuclear physics ,Pion ,0103 physical sciences ,Neutron ,010306 general physics ,Neutral particle ,lead ,Interaction point ,010308 nuclear & particles physics ,nuclear matter: effect ,LHC-F ,showers ,hadronic interaction ,Air shower ,n: transverse momentum ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,LHCf ,pi0: transverse momentum ,experimental results - Abstract
The LHC-forward (LHCf) experiment, situated at the LHC accelerator, has measured neutral particles production in a very forward region (pseudo-rapidity > 8.4) in proton-proton and proton-lead collisions. The main purpose of the LHCf experiment is to test hadronic interaction models used in cosmic rays experiments to imulate cosmic rays induced air-showers in Earth’s atmosphere.The experiment is composed of two independent detectors located at 140m from the ATLAS interaction point (IP1) on opposite sides ; each detector is composed of two sampling calorimeters.Latest physics results from p-p and p-Pb collisions (at √s = 7 TeV and 5.02 TeV respectively) will be discussed in this paper ; in particular, the inclusive energy spectra of neutrons in p-p collisions and the transverse momentum spectra of neutral pions for different pseudo-rapidity ranges in p-Pb collisions will be shown.
- Published
- 2014
- Full Text
- View/download PDF
45. Production and test of the LHCf microstrip silicon system
- Author
-
T. Mase, P. Papini, Kimiaki Masuda, Hiroaki Menjo, Wc Turner, A. L. Perrot, Takashi Sako, S. B. Ricciarini, Shoji Torii, H Watanabe, Yutaka Matsubara, Raffaello D'Alessandro, J. Velasco, M. Bongi, M. Mizuishi, M. Haguenauer, Katsuaki Kasahara, Yasushi Muraki, O. Adriani, Lorenzo Bonechi, Yuki Shimizu, G. Castellini, A. Faus, Alessia Tricomi, D. Macina, T. Tamura, Yoshitaka Itow, Hironori Matsumoto, and Kenji Yoshida
- Subjects
Physics ,Nuclear and High Energy Physics ,Large Hadron Collider ,Silicon ,Calorimeter (particle physics) ,Nuclear engineering ,Detector ,chemistry.chemical_element ,Microstrip ,Test (assessment) ,Nuclear physics ,chemistry ,Instrumentation ,Beam (structure) - Abstract
After a preliminary installation test, successfully performed in 2007, both the detectors of the LHCf experiment are now ready to be installed at the CERN LHC accelerator for the first physics run. A beam test at SPS in September 2007 allowed to verify the performance of the apparata. Production and test of the silicon tracker developed for one of them are shortly discussed in this work.
- Published
- 2008
- Full Text
- View/download PDF
46. The performance of the LHCf detector for hadronic showers
- Author
-
Alessia Tricomi, G. Castellini, W. C. Turner, Takashi Sako, Kimiaki Masuda, Paolo Papini, T. Tamura, Raffaello D'Alessandro, M. Del Prete, O. Adriani, S. B. Ricciarini, Hiroaki Menjo, N. Sakurai, A. L. Perrot, L. Bonechi, Yasushi Shimizu, G. Mitsuka, E. Matsubayashi, Y. Makino, Shoji Torii, Yoshitaka Itow, M. Haguenauer, Toshikazu Suzuki, Kentaro Kawade, Katsuaki Kasahara, Yasushi Muraki, and Massimo Bongi
- Subjects
fast neutrons) ,Physics - Instrumentation and Detectors ,Proton ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Nuclear Theory ,FOS: Physical sciences ,thermal ,High Energy Physics - Experiment ,Nuclear physics ,Calorimeters ,High Energy Physics - Experiment (hep-ex) ,Thermal ,Neutron ,Detectors and Experimental Techniques ,Nuclear Experiment ,Instrumentation ,Mathematical Physics ,Physics ,Large Hadron Collider ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Neutron temperature ,Neutron detectors (cold ,High Energy Physics::Experiment ,Beam (structure) - Abstract
The Large Hadron Collider forward (LHCf) experiment has been designed to use the LHC to benchmark the hadronic interaction models used in cosmic-ray physics. The LHCf experiment measures neutral particles emitted in the very forward region of LHC collisions. In this paper, the performances of the LHCf detectors for hadronic showers was studied with MC simulations and beam tests. The detection efficiency for neutrons is from 60% to 70% above 500 GeV. The energy resolutions are about 40% and the position resolution is 0.1 to 1.3mm depend on the incident energy for neutrons. The energy scale determined by the MC simulations and the validity of the MC simulations were examined using 350 GeV proton beams at the CERN-SPS., Comment: 15pages, 19 figures
- Published
- 2013
- Full Text
- View/download PDF
47. LHCf detector performance during the 2009-2010 LHC run
- Author
-
Hiroaki Menjo, Yasushi Muraki, Takashi Sako, S. B. Ricciarini, P. Papini, G. Castellini, Raffaello D'Alessandro, Kiyoshi Kawade, O. Adriani, Koji Noda, M. Bongi, Lorenzo Bonechi, T. Iso, M. Haguenauer, Yasushi Shimizu, G. Mitsuka, W. C. Turner, Kimiaki Masuda, Alessia Tricomi, Yoshitaka Itow, Shoji Torii, Toshiharu Suzuki, T. Tamura, Katsuaki Kasahara, and A. L. Perrot
- Subjects
Event trigger ,Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Photon ,Calorimeter (particle physics) ,Detector ,Astronomy and Astrophysics ,Detectors and Experimental Techniques ,Atomic and Molecular Physics, and Optics ,Particle identification - Abstract
Large Hadron Collider forward (LHCf) has successfully completed the operation during the LHC 2009–2010 period and the detectors were removed in July 2010. The event trigger, data analysis and background have been intensively studied in order to derive inclusive single photon and π0 spectra. In this paper, the details of these intensive studies are described.
- Published
- 2013
48. Measurement of forward neutral pion transverse momentum spectra fors=7 TeVproton-proton collisions at the LHC
- Author
-
M. Haguenauer, T. Iso, Hiroaki Menjo, K. Suzuki, A. L. Perrot, G. Mitsuka, Y. Shimizu, Lorenzo Bonechi, T. K. Sako, Yoshitaka Itow, T. Tamura, Alessia Tricomi, O. Adriani, Shoji Torii, Raffaello D'Alessandro, G. Castellini, K. Kasahara, M. Bongi, Toshiharu Suzuki, K. Fukatsu, Kiyoshi Kawade, Koji Noda, S. B. Ricciarini, P. Papini, W. C. Turner, T. Mase, Kimiaki Masuda, K. Taki, and Yasushi Muraki
- Subjects
Physics ,Nuclear and High Energy Physics ,Range (particle radiation) ,Particle physics ,Large Hadron Collider ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Hadron ,Cosmic ray ,Spectral line ,Nuclear physics ,Pion ,High Energy Physics::Experiment ,Rapidity ,Nuclear Experiment - Abstract
The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during $\sqrt{s}=7\text{ }\text{ }\mathrm{TeV}$ proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross-check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high-energy particle physics and for modeling ultrahigh-energy cosmic ray showers.
- Published
- 2012
- Full Text
- View/download PDF
49. Forward photon energy spectrum at LHC 7-TeV p-p collisions measured by LHCf
- Author
-
Katsuaki Kasahara, Alessia Tricomi, Kiyoshi Kawade, K. Fukatsu, G. Castellini, S. B. Ricciarini, P. Papini, Yasushi Muraki, A. L. Perrot, T. Tamura, Koji Noda, Raffaello D'Alessandro, M. Nakai, Hiroaki Menjo, W. C. Turner, M. Haguenauer, T. Mase, Kimiaki Masuda, M. Bongi, D. Macina, G. Mitsuka, Toshiharu Suzuki, O. Adriani, T. K. Sako, K. Suzuki, Shoji Torii, Yasushi Shimizu, Yoshitaka Itow, and K. Taki
- Subjects
Physics ,UHECRs ,Nuclear and High Energy Physics ,Range (particle radiation) ,Particle physics ,Photon ,Large Hadron Collider ,genetic structures ,Hadron interaction model ,Hadron ,Photon energy ,Spectral line ,Nuclear physics ,Air shower ,Neutron ,Nuclear Experiment ,LHCf ,Instrumentation - Abstract
The LHCf experiment is one of the LHC forward experiments. The aim is to measure the energy and the transverse momentum spectra of photons, neutrons and π 0 's at the very forward region (the pseudo-rapidity range of η > 8.4 ), which should be critical data to calibrate hadron interaction models used in the air shower simulations. LHCf successfully operated at s = 900 GeV and s = 7 TeV proton–proton collisions in 2009 and 2010. We present the first physics result, single photon energy spectra at s = 7 TeV proton–proton collisions and the pseudo-rapidity ranges of η > 10.94 and 8.81 η 8.9 . The obtained spectra were compared with the predictions by several hadron interaction models and the models do not reproduce the experimental results perfectly.
- Published
- 2012
- Full Text
- View/download PDF
50. Calibration of LHCf calorimeters for photon measurement by CERN SPS test beam
- Author
-
Raffaello D'Alessandro, Yasushi Muraki, Takashi Sako, S. B. Ricciarini, M. Nakai, P. Papini, A. L. Perrot, Hiroaki Menjo, M. Bongi, K. Taki, Hiroshi Watanabe, T. Tamura, D. Macina, Takahiro Sumi, M. Mizuishi, K. Fukui, O. Adriani, Shoji Torii, A. Viciani, Yasushi Shimizu, Alessia Tricomi, G. Mitsuka, Lorenzo Bonechi, G. Castellini, M. Haguenauer, W. C. Turner, T. Mase, Kimiaki Masuda, Katsuaki Kasahara, Yoshitaka Itow, and Kenji Yoshida
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Muon ,Photon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Electron ,Calorimeter ,Nuclear physics ,Beamline ,Calibration ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Nuclear Experiment ,Instrumentation - Abstract
Energy resolution and linearity of the LHCf calorimeters for electromagnetic showers were measured at the SPS H4 beam line in 2007 using electron beams of 50-200 GeV and muon beams of 150 GeV. The absolute energy scale was determined in these data. The results that were obtained (
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.