1. Self-adjoint curl operators
- Author
-
Hiptmair, R., Kotiuga, P. R., and Tordeux, S.
- Subjects
Mathematics - Functional Analysis ,47F05, 46N20 - Abstract
We study the exterior derivative as a symmetric unbounded operator on square integrable 1-forms on a 3D bounded domain $D$. We aim to identify boundary conditions that render this operator self-adjoint. By the symplectic version of the Glazman-Krein-Naimark theorem this amounts to identifying complete Lagrangian subspaces of the trace space of H(curl) equipped with a symplectic pairing arising from the $\wedge$-product of 1-forms on $\partial D$. Substantially generalizing earlier results, we characterize Lagrangian subspaces associated with closed and co-closed traces. In the case of non-trivial topology of the domain, different contributions from co-homology spaces also distinguish different self-adjoint extension. Finally, all self-adjoint extensions discussed in the paper are shown to possess a discrete point spectrum, and their relationship with curl curl-operators is discussed., Comment: 30 pages, no figures
- Published
- 2008