9 results on '"Hilmers T"'
Search Results
2. Assessment of Indicators for Climate Smart Management in Mountain Forests
- Author
-
del Río, M., Pretzsch, H., Bončina, A., Avdagić, A., Bielak, K., Binder, F., Coll, L., Hilmers, T., Höhn, M., Kašanin-Grubin, M., Klopčič, M., Neroj, B., Pfatrisch, M., Stajić, B., Stimm, K., Uhl, E., Tomé, Margarida, Series Editor, Seifert, Thomas, Series Editor, Kurttila, Mikko, Series Editor, Tognetti, Roberto, editor, Smith, Melanie, editor, and Panzacchi, Pietro, editor
- Published
- 2022
- Full Text
- View/download PDF
3. Simulating conversion of even-aged Norway spruce into uneven-aged mixed forest: effects of different scenarios on production, economy and heterogeneity
- Author
-
Reventlow, D. O. J., Nord-Larsen, T., Biber, P., Hilmers, T., and Pretzsch, H.
- Published
- 2021
- Full Text
- View/download PDF
4. Assessment of Indicators for Climate Smart Management in Mountain Forests
- Author
-
del Río, M., primary, Pretzsch, H., additional, Bončina, A., additional, Avdagić, A., additional, Bielak, K., additional, Binder, F., additional, Coll, L., additional, Hilmers, T., additional, Höhn, M., additional, Kašanin-Grubin, M., additional, Klopčič, M., additional, Neroj, B., additional, Pfatrisch, M., additional, Stajić, B., additional, Stimm, K., additional, and Uhl, E., additional
- Published
- 2021
- Full Text
- View/download PDF
5. Efficacy of Trans-geographic Observational Network Design for Revelation of Growth Pattern in Mountain Forests Across Europe
- Author
-
Pretzsch, H., primary, Hilmers, T., additional, Uhl, E., additional, del Río, M., additional, Avdagić, A., additional, Bielak, K., additional, Bončina, A., additional, Coll, L., additional, Giammarchi, F., additional, Stimm, K., additional, Tonon, G., additional, Höhn, M., additional, Kašanin-Grubin, M., additional, and Tognetti, R., additional
- Published
- 2021
- Full Text
- View/download PDF
6. Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe.
- Author
-
Jevšenak J, Klisz M, Mašek J, Čada V, Janda P, Svoboda M, Vostarek O, Treml V, van der Maaten E, Popa A, Popa I, van der Maaten-Theunissen M, Zlatanov T, Scharnweber T, Ahlgrimm S, Stolz J, Sochová I, Roibu CC, Pretzsch H, Schmied G, Uhl E, Kaczka R, Wrzesiński P, Šenfeldr M, Jakubowski M, Tumajer J, Wilmking M, Obojes N, Rybníček M, Lévesque M, Potapov A, Basu S, Stojanović M, Stjepanović S, Vitas A, Arnič D, Metslaid S, Neycken A, Prislan P, Hartl C, Ziche D, Horáček P, Krejza J, Mikhailov S, Světlík J, Kalisty A, Kolář T, Lavnyy V, Hordo M, Oberhuber W, Levanič T, Mészáros I, Schneider L, Lehejček J, Shetti R, Bošeľa M, Copini P, Koprowski M, Sass-Klaassen U, Izmir ŞC, Bakys R, Entner H, Esper J, Janecka K, Martinez Del Castillo E, Verbylaite R, Árvai M, de Sauvage JC, Čufar K, Finner M, Hilmers T, Kern Z, Novak K, Ponjarac R, Puchałka R, Schuldt B, Škrk Dolar N, Tanovski V, Zang C, Žmegač A, Kuithan C, Metslaid M, Thurm E, Hafner P, Krajnc L, Bernabei M, Bojić S, Brus R, Burger A, D'Andrea E, Đorem T, Gławęda M, Gričar J, Gutalj M, Horváth E, Kostić S, Matović B, Merela M, Miletić B, Morgós A, Paluch R, Pilch K, Rezaie N, Rieder J, Schwab N, Sewerniak P, Stojanović D, Ullmann T, Waszak N, Zin E, Skudnik M, Oštir K, Rammig A, and Buras A
- Subjects
- Forests, Trees, Climate Change, Europe, Eastern, Europe, Ecosystem, Remote Sensing Technology
- Abstract
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R
2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments., Competing Interests: Declaration of competing interest The authors declare no competing interests., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
7. Trait-mediated responses of caterpillar communities to spongy moth outbreaks and subsequent tebufenozide treatments.
- Author
-
Leroy BML, Rabl D, Püls M, Hochrein S, Bae S, Müller J, Hebert PDN, Kuzmina ML, Zakharov EV, Lemme H, Hahn WA, Hilmers T, Jacobs M, Kienlein S, Pretzsch H, Heidrich L, Seibold S, Roth N, Vogel S, Kriegel P, and Weisser WW
- Subjects
- Animals, Ecosystem, Moths, Insecticides, Bacillus thuringiensis
- Abstract
Outbreaks of the spongy moth Lymantria dispar can have devastating impacts on forest resources and ecosystems. Lepidoptera-specific insecticides, such as Bacillus thuringiensis var. kurstaki (BTK) and tebufenozide, are often deployed to prevent heavy defoliation of the forest canopy. While it has been suggested that using BTK poses less risk to non-target Lepidoptera than leaving an outbreak untreated, in situ testing of this assumption has been impeded by methodological challenges. The trade-offs between insecticide use and outbreaks have yet to be addressed for tebufenozide, which is believed to have stronger side effects than BTK. We investigated the short-term trade-offs between tebufenozide treatments and no-action strategies for the non-target herbivore community in forest canopies. Over 3 years, Lepidoptera and Symphyta larvae were sampled by canopy fogging in 48 oak stands in southeast Germany during and after a spongy moth outbreak. Half of the sites were treated with tebufenozide and changes in canopy cover were monitored. We contrasted the impacts of tebufenozide and defoliator outbreaks on the abundance, diversity, and functional structure of chewing herbivore communities. Tebufenozide treatments strongly reduced Lepidoptera up to 6 weeks after spraying. Populations gradually converged back to control levels after 2 years. Shelter-building species dominated caterpillar assemblages in treated plots in the post-spray weeks, while flight-dimorphic species were slow to recover and remained underrepresented in treated stands 2 years post-treatment. Spongy moth outbreaks had minor effects on leaf chewer communities. Summer Lepidoptera decreased only when severe defoliation occurred, whereas Symphyta declined 1 year after defoliation. Polyphagous species with only partial host plant overlap with the spongy moth were absent from heavily defoliated sites, suggesting greater sensitivity of generalists to defoliation-induced plant responses. These results demonstrate that both tebufenozide treatments and spongy moth outbreaks alter canopy herbivore communities. Tebufenozide had a stronger and longer lasting impact, but it was restricted to Lepidoptera, whereas the outbreak affected both Lepidoptera and Symphyta. These results are tied to the fact that only half of the outbreak sites experienced severe defoliation. This highlights the limited accuracy of current defoliation forecast methods, which are used as the basis for the decision to spray insecticides., (© 2023 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
8. Nutrient regime modulates drought response patterns of three temperate tree species.
- Author
-
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, and Pretzsch H
- Subjects
- Trees physiology, Ecosystem, Droughts, Climate Change, Forests, Water, Picea physiology, Fagus physiology
- Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management., Competing Interests: Declaration of competing interest None declared., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
9. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe?
- Author
-
Sommerfeld A, Rammer W, Heurich M, Hilmers T, Müller J, and Seidl R
- Abstract
Bark beetle outbreaks have intensified in many forests around the globe in recent years. Yet, the legacy of these disturbances for future forest development remains unclear. Bark beetle disturbances are expected to increase further because of climate change. Consequently, feedbacks within the disturbance regime are of growing interest, for example, whether bark beetle outbreaks are amplifying future bark beetle activity (through the initiation of an even-aged cohort of trees) or dampening it (through increased structural and compositional diversity).We studied bark beetle-vegetation-climate interactions in the Bavarian Forest National Park (Germany), an area characterised by unprecedented bark beetle activity in the recent past. We simulated the effect of future bark beetle outbreaks on forest structure and composition and analysed how disturbance-mediated forest dynamics influence future bark beetle activity under different scenarios of climate change. We used process-based simulation modelling in combination with machine learning to disentangle the long-term interactions between vegetation, climate and bark beetles at the landscape scale.Disturbances by the European spruce bark beetle were strongly amplified by climate change, increasing between 59% and 221% compared to reference climate. Bark beetle outbreaks reduced the dominance of Norway spruce ( Picea abies (L.) Karst.) on the landscape, increasing compositional diversity. Disturbances decreased structural diversity within stands ( α diversity) and increased structural diversity between stands ( β diversity). Overall, disturbance-mediated changes in forest structure and composition dampened future disturbance activity (a reduction of up to -67%), but were not able to fully compensate for the amplifying effect of climate change. Synthesis . Our findings indicate that the recent disturbance episode at the Bavarian Forest National Park was caused by a convergence of highly susceptible forest structures with climatic conditions favourable for bark beetle outbreaks. While future climate is increasingly conducive to massive outbreaks, the emerging landscape structure is less and less likely to support them. This study improves our understanding of the long-term legacies of ongoing bark beetle disturbances in Central Europe. It indicates that increased diversity provides an important dampening feedback, and suggests that preventing disturbances or homogenizing post-disturbance forests could elevate the future susceptibility to large-scale bark beetle outbreaks., (© 2020 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.