1. Albumin Hydrogel-Coated Mesoporous Silica Nanoparticle as a Carrier of Cationic Porphyrin and Ratiometric Fluorescence pH Sensor.
- Author
-
Shinoda H, Higano R, Oizumi T, Nakamura AJ, Kamijo T, Takahashi M, Nagaoka M, Sato Y, and Yamaguchi A
- Subjects
- Silicon Dioxide, Fluorescence, Hydrogels, Serum Albumin, Bovine, Hydrogen-Ion Concentration, Cations, Porphyrins, Nanoparticles
- Abstract
Here, we report that a mesoporous silica nanoparticle (MSN) coated with a fluoresceine-labeled bovine serum albumin (F-BSA) hydrogel layer works as a temperature-responsive nanocarrier for tetrakis- N -methylpyridyl porphyrin (TMPyP) and as a fluorescence ratiometric pH probe. F-BSA hydrogel-coated MSN containing TMPyP (F-BSA/MSN/TMPyP) was synthesized by thermal gelation of denatured F-BSA on the external surface of MSN. The F-BSA hydrogel layer was composed of an inner hard corona layer and an outer soft layer and was stable under physiological conditions. F-BSA/MSN/TMPyP exhibited temperature-dependent exponential release of TMPyP. In this release profile, the MSN was found to be a suitable host for stable encapsulation of tetracationic TMPyP by electrostatic interactions, and the F-BSA hydrogel layer mediated the diffusion of TMPyP from the MSN pore interior into the solution phase. Increasing temperature promoted partitioning of TMPyP from the pore interior to the F-BSA hydrogel layer, from where it was spontaneously released into the bulk solution phase by cation exchange. F-BSA/MSN/TMPyP also gave a linear ratiometric fluorescence response (1.3 per pH unit) in the pH range from 6.1 to 8.9.
- Published
- 2024
- Full Text
- View/download PDF