1. TMS-EEG signatures of the effects of transcranial static magnetic field stimulation (tSMS) on cortical excitability
- Author
-
Sumiya Shibata, Hideaki Onishi, and Tatsuya Mima
- Subjects
Medicine ,Science - Abstract
Abstract In transcranial static magnetic field stimulation (tSMS), a strong and small magnet placed over the head can modulate cortical functions below the magnet as well as those in the region remote from the magnet. We studied the neuromodulation induced by tSMS using transcranial magnetic stimulation (TMS) combined with simultaneous electroencephalography (EEG) to clarify the neurophysiological underpinnings of tSMS. tSMS or sham stimulation was applied over the left primary motor cortex (M1) for 20 min in 15 healthy subjects. Single pulse TMS was delivered over the left M1 before and after the intervention, while recording EEG. The amplitude around the P30 of the TMS-evoked potentials (TEPs) in the left primary sensorimotor area (SM1) significantly decreased after the real tSMS, and that around the N60 of the TEPs in the right SM1 significantly increased after the real tSMS. In addition, the alpha power of the TMS-induced oscillatory responses (IORs) in the left and right SM1 significantly decreased after the real tSMS. TMS-EEG is a powerful tool for studying local and global cortical reactivity to external stimuli at high temporal resolution. tSMS altered TEPs and IORs both at the stimulated cortex and at the contralateral cortex. These findings would be related to the neurophysiological mechanisms underlying the neuromodulation induced by tSMS.
- Published
- 2024
- Full Text
- View/download PDF