8 results on '"Hertzberg, Jakob"'
Search Results
2. TADA—a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs
- Author
-
Hertzberg, Jakob, Mundlos, Stefan, Vingron, Martin, and Gallone, Giuseppe
- Published
- 2022
- Full Text
- View/download PDF
3. Genome sequencing in families with congenital limb malformations
- Author
-
Elsner, Jonas, Mensah, Martin A., Holtgrewe, Manuel, Hertzberg, Jakob, Bigoni, Stefania, Busche, Andreas, Coutelier, Marie, de Silva, Deepthi C., Elçioglu, Nursel, Filges, Isabel, Gerkes, Erica, Girisha, Katta M., Graul-Neumann, Luitgard, Jamsheer, Aleksander, Krawitz, Peter, Kurth, Ingo, Markus, Susanne, Megarbane, Andre, Reis, André, Reuter, Miriam S., Svoboda, Daniel, Teller, Christopher, Tuysuz, Beyhan, Türkmen, Seval, Wilson, Meredith, Woitschach, Rixa, Vater, Inga, Caliebe, Almuth, Hülsemann, Wiebke, Horn, Denise, Mundlos, Stefan, and Spielmann, Malte
- Published
- 2021
- Full Text
- View/download PDF
4. PEDIA: prioritization of exome data by image analysis
- Author
-
Hsieh, Tzung-Chien, Mensah, Martin A., Pantel, Jean T., Aguilar, Dione, Bar, Omri, Bayat, Allan, Becerra-Solano, Luis, Bentzen, Heidi B., Biskup, Saskia, Borisov, Oleg, Braaten, Oivind, Ciaccio, Claudia, Coutelier, Marie, Cremer, Kirsten, Danyel, Magdalena, Daschkey, Svenja, Eden, Hilda David, Devriendt, Koenraad, Wilson, Sandra, Douzgou, Sofia, Đukić, Dejan, Ehmke, Nadja, Fauth, Christine, Fischer-Zirnsak, Björn, Fleischer, Nicole, Gabriel, Heinz, Graul-Neumann, Luitgard, Gripp, Karen W., Gurovich, Yaron, Gusina, Asya, Haddad, Nechama, Hajjir, Nurulhuda, Hanani, Yair, Hertzberg, Jakob, Hoertnagel, Konstanze, Howell, Janelle, Ivanovski, Ivan, Kaindl, Angela, Kamphans, Tom, Kamphausen, Susanne, Karimov, Catherine, Kathom, Hadil, Keryan, Anna, Knaus, Alexej, Köhler, Sebastian, Kornak, Uwe, Lavrov, Alexander, Leitheiser, Maximilian, Lyon, Gholson J., Mangold, Elisabeth, Reina, Purificación Marín, Carrascal, Antonio Martinez, Mitter, Diana, Herrador, Laura Morlan, Nadav, Guy, Nöthen, Markus, Orrico, Alfredo, Ott, Claus-Eric, Park, Kristen, Peterlin, Borut, Pölsler, Laura, Raas-Rothschild, Annick, Randolph, Linda, Revencu, Nicole, Fagerberg, Christina Ringmann, Robinson, Peter Nick, Rosnev, Stanislav, Rudnik, Sabine, Rudolf, Gorazd, Schatz, Ulrich, Schossig, Anna, Schubach, Max, Shanoon, Or, Sheridan, Eamonn, Smirin-Yosef, Pola, Spielmann, Malte, Suk, Eun-Kyung, Sznajer, Yves, Thiel, Christian T., Thiel, Gundula, Verloes, Alain, Vrecar, Irena, Wahl, Dagmar, Weber, Ingrid, Winter, Korina, Wiśniewska, Marzena, Wollnik, Bernd, Yeung, Ming W., Zhao, Max, Zhu, Na, Zschocke, Johannes, Mundlos, Stefan, Horn, Denise, and Krawitz, Peter M.
- Published
- 2019
- Full Text
- View/download PDF
5. Additional file 1 of TADA���a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs
- Author
-
Hertzberg, Jakob, Mundlos, Stefan, Vingron, Martin, and Gallone, Giuseppe
- Abstract
Additional file 1 Figures S1-S21. Tables S1-3.
- Published
- 2022
- Full Text
- View/download PDF
6. Additional file 2 of TADA���a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs
- Author
-
Hertzberg, Jakob, Mundlos, Stefan, Vingron, Martin, and Gallone, Giuseppe
- Abstract
Additional file 2 Review history.
- Published
- 2022
- Full Text
- View/download PDF
7. PEDIA:prioritization of exome data by image analysis
- Author
-
Hsieh, Tzung Chien, Mensah, Martin A., Pantel, Jean T., Aguilar, Dione, Bar, Omri, Bayat, Allan, Becerra-Solano, Luis, Bentzen, Heidi B., Biskup, Saskia, Borisov, Oleg, Braaten, Oivind, Ciaccio, Claudia, Coutelier, Marie, Cremer, Kirsten, Danyel, Magdalena, Daschkey, Svenja, Eden, Hilda David, Devriendt, Koenraad, Wilson, Sandra, Douzgou, Sofia, Đukić, Dejan, Ehmke, Nadja, Fauth, Christine, Fischer-Zirnsak, Björn, Fleischer, Nicole, Gabriel, Heinz, Graul-Neumann, Luitgard, Gripp, Karen W., Gurovich, Yaron, Gusina, Asya, Haddad, Nechama, Hajjir, Nurulhuda, Hanani, Yair, Hertzberg, Jakob, Hoertnagel, Konstanze, Howell, Janelle, Ivanovski, Ivan, Kaindl, Angela, Kamphans, Tom, Kamphausen, Susanne, Karimov, Catherine, Kathom, Hadil, Keryan, Anna, Knaus, Alexej, Köhler, Sebastian, Kornak, Uwe, Lavrov, Alexander, Leitheiser, Maximilian, Lyon, Gholson J., Mangold, Elisabeth, Hsieh, Tzung Chien, Mensah, Martin A., Pantel, Jean T., Aguilar, Dione, Bar, Omri, Bayat, Allan, Becerra-Solano, Luis, Bentzen, Heidi B., Biskup, Saskia, Borisov, Oleg, Braaten, Oivind, Ciaccio, Claudia, Coutelier, Marie, Cremer, Kirsten, Danyel, Magdalena, Daschkey, Svenja, Eden, Hilda David, Devriendt, Koenraad, Wilson, Sandra, Douzgou, Sofia, Đukić, Dejan, Ehmke, Nadja, Fauth, Christine, Fischer-Zirnsak, Björn, Fleischer, Nicole, Gabriel, Heinz, Graul-Neumann, Luitgard, Gripp, Karen W., Gurovich, Yaron, Gusina, Asya, Haddad, Nechama, Hajjir, Nurulhuda, Hanani, Yair, Hertzberg, Jakob, Hoertnagel, Konstanze, Howell, Janelle, Ivanovski, Ivan, Kaindl, Angela, Kamphans, Tom, Kamphausen, Susanne, Karimov, Catherine, Kathom, Hadil, Keryan, Anna, Knaus, Alexej, Köhler, Sebastian, Kornak, Uwe, Lavrov, Alexander, Leitheiser, Maximilian, Lyon, Gholson J., and Mangold, Elisabeth
- Abstract
Purpose: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. Methods: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. Results: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20–89% and the top 10 accuracy rate by more than 5–99% for the disease-causing gene. Conclusion: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.
- Published
- 2019
8. Genome sequencing in families with congenital limb malformations
- Author
-
Erica H. Gerkes, Ingo Kurth, Beyhan Tüysüz, Isabel Filges, Martin A. Mensah, Stefan Mundlos, Susanne Markus, Luitgard Graul-Neumann, Wiebke Hülsemann, Daniel Svoboda, Manuel Holtgrewe, Nursel Elcioglu, Marie Coutelier, Almuth Caliebe, Aleksander Jamsheer, Jonas Elsner, Christopher Teller, Stefania Bigoni, Rixa Woitschach, Malte Spielmann, Inga Vater, Jakob Hertzberg, Miriam S. Reuter, Peter Krawitz, Katta M. Girisha, Deepthi De Silva, Denise Horn, André Mégarbané, André Reis, Andreas Busche, Meredith Wilson, Seval Türkmen, Elsner, Jonas, Mensah, Martin A., Holtgrewe, Manuel, Hertzberg, Jakob, Bigoni, Stefania, Busche, Andreas, Coutelier, Marie, de Silva, Deepthi C., Elcioglu, Nursel, Filges, Isabel, Gerkes, Erica, Girisha, Katta M., Graul-Neumann, Luitgard, Jamsheer, Aleksander, Krawitz, Peter, Kurth, Ingo, Markus, Susanne, Megarbane, Andre, Reis, Andre, Reuter, Miriam S., Svoboda, Daniel, Teller, Christopher, Tuysuz, Beyhan, Turkmen, Seval, Wilson, Meredith, Woitschach, Rixa, Vater, Inga, Caliebe, Almuth, Hulsemann, Wiebke, Horn, Denise, Mundlos, Stefan, and Spielmann, Malte
- Subjects
Male ,DISRUPTION ,Candidate gene ,Ectrodactyly ,Duplication ,FEATURES ,Gene Expression ,Expression ,Ubiquitin-Activating Enzymes ,Gene ,Cohort Studies ,Features ,Genetics (clinical) ,Original Investigation ,Genetics ,Patient ,Remote ,Pedigree ,REMOTE ,Mutations ,EXPRESSION ,DNA Copy Number Variations ,Limb Deformities, Congenital ,Biology ,PATIENT ,DNA sequencing ,ENHANCER ,Genetic Heterogeneity ,Genetic variation ,medicine ,Humans ,Genetic Testing ,ddc:610 ,Homeodomain Proteins ,Base Sequence ,Whole Genome Sequencing ,MUTATIONS ,Genetic heterogeneity ,Infant ,medicine.disease ,GENE ,DUPLICATION ,Human genetics ,HOXD13 ,Mutation ,Disruption ,Trinucleotide repeat expansion ,Enhancer ,Transcription Factors - Abstract
The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified. Polish National Science Centre [UMO-2016/22/E/NZ5/00270]; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [SP1532/3-1, SP1532/4-1, SP1532/5-1]; Max Planck FoundationFoundation CELLEX; Deutsches Zentrum fur Luft-und Raumfahrt (DLR)Helmholtz AssociationGerman Aerospace Centre (DLR) [01GM1925]; Projekt DEAL Open Access funding enabled and organized by Projekt DEAL. A.J. was supported by the grant from the Polish National Science Centre UMO-2016/22/E/NZ5/00270. M.S. is supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SP1532/31, SP1532/4-1 and SP1532/5-1), the Max Planck Foundation and the Deutsches Zentrum fur Luft-und Raumfahrt (DLR 01GM1925).
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.