1. Melatonin alleviates brain injury in copper-laden rats: Underlying benefits for Wilson's disease.
- Author
-
Zhang X, Zhou L, Peng Y, He S, Mao Z, Cai J, Geng A, Yang H, and Huang P
- Subjects
- Animals, Rats, Male, Rats, Sprague-Dawley, Molecular Docking Simulation, Brain Injuries metabolism, Brain Injuries drug therapy, Hepatolenticular Degeneration drug therapy, Hepatolenticular Degeneration metabolism, Melatonin pharmacology, Copper metabolism
- Abstract
Copper serves as an indispensable cofactor for all living organisms, and its excessive accumulation has been associated with a variety of diseases. Wilson's disease (WD) serves as an illustrative example of copper toxicity in humans, frequently presenting with liver and/or neuropsychiatric symptoms. The current therapeutic drugs, penicillamine (PA) and zinc gluconate (ZnG), have constraints, and research on their combination efficacy remains insufficient. It has been reported that melatonin (MLT) plays a vital role in binding to transition metals and exhibits strong antioxidant capacity. To investigate the therapeutic efficacy of MLT and combined treatment, rats were randomly divided into the following seven groups: the control (Con) group, copper-laden model rat (Mod) group, PA-treated group, ZnG-treated group, MLT- treated group, PA-ZnG-treated group, and PA-MLT-treated group. Then potential mechanisms and targets were investigated using a combination of metabolomics and network pharmacology and verified by molecular docking and qPCR. The findings revealed that MLT and the combination significantly improved behavior, pathology and copper levels in copper-laden rats. The results of the metabolomics study showed that profoundly altered metabolites were identified, and alanine, aspartate and glutamate metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis were explored. In addition, molecular docking showed that MLT had high binding affinity with key targets, and qPCR results revealed that MLT could reverse the mRNA expression of targets GOT2 and PKM2. It was concluded that MLT effectively improves brain injury in copper-laden rats, and this effect was linked with the altered features of the metabolite profiles., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF