1. ACE2-SOM: Coupling an ML atmospheric emulator to a slab ocean and learning the sensitivity of climate to changed CO$_2$
- Author
-
Clark, Spencer K., Watt-Meyer, Oliver, Kwa, Anna, McGibbon, Jeremy, Henn, Brian, Perkins, W. Andre, Wu, Elynn, Harris, Lucas M., and Bretherton, Christopher S.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
While autoregressive machine-learning-based emulators have been trained to produce stable and accurate rollouts in the climate of the present-day and recent past, none so far have been trained to emulate the sensitivity of climate to substantial changes in CO$_2$ or other greenhouse gases. As an initial step we couple the Ai2 Climate Emulator version 2 to a slab ocean model (hereafter ACE2-SOM) and train it on output from a collection of equilibrium-climate physics-based reference simulations with varying levels of CO$_2$. We test it in equilibrium and non-equilibrium climate scenarios with CO$_2$ concentrations seen and unseen in training. ACE2-SOM performs well in equilibrium-climate inference with both in-sample and out-of-sample CO$_2$ concentrations, accurately reproducing the emergent time-mean spatial patterns of surface temperature and precipitation change with CO$_2$ doubling, tripling, or quadrupling. In addition, the vertical profile of atmospheric warming and change in extreme precipitation rates up to the 99.9999th percentile closely agree with the reference model. Non-equilibrium-climate inference is more challenging. With CO$_2$ increasing gradually at a rate of 2% year$^{-1}$, ACE2-SOM can accurately emulate the global annual mean trends of surface and lower-to-middle atmosphere fields but produces unphysical jumps in stratospheric fields. With an abrupt quadrupling of CO$_2$, ML-controlled fields transition unrealistically quickly to the 4xCO$_2$ regime. In doing so they violate global energy conservation and exhibit unphysical sensitivities of and surface and top of atmosphere radiative fluxes to instantaneous changes in CO$_2$. Future emulator development needed to address these issues should improve its generalizability to diverse climate change scenarios., Comment: 31 pages, 13 figures
- Published
- 2024