12 results on '"Heneghan RF"'
Search Results
2. The global distribution and climate resilience of marine heterotrophic prokaryotes.
- Author
-
Heneghan RF, Holloway-Brown J, Gasol JM, Herndl GJ, Morán XAG, and Galbraith ED
- Subjects
- Seawater microbiology, Food Chain, Animals, Zooplankton metabolism, Carbon metabolism, Fishes, Prokaryotic Cells metabolism, Climate Change, Archaea metabolism, Heterotrophic Processes, Bacteria metabolism, Oceans and Seas, Biomass
- Abstract
Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr
-1 ). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
3. Cost-benefit analysis of ecosystem modeling to support fisheries management.
- Author
-
Holden MH, Plagányi EE, Fulton EA, Campbell AB, Janes R, Lovett RA, Wickens M, Adams MP, Botelho LL, Dichmont CM, Erm P, Helmstedt KJ, Heneghan RF, Mendiolar M, Richardson AJ, Rogers JGD, Saunders K, and Timms L
- Subjects
- Australia, Animals, Conservation of Natural Resources economics, Models, Biological, Fishes, Models, Theoretical, Fisheries economics, Cost-Benefit Analysis, Ecosystem
- Abstract
Mathematical and statistical models underlie many of the world's most important fisheries management decisions. Since the 19th century, difficulty calibrating and fitting such models has been used to justify the selection of simple, stationary, single-species models to aid tactical fisheries management decisions. Whereas these justifications are reasonable, it is imperative that we quantify the value of different levels of model complexity for supporting fisheries management, especially given a changing climate, where old methodologies may no longer perform as well as in the past. Here we argue that cost-benefit analysis is an ideal lens to assess the value of model complexity in fisheries management. While some studies have reported the benefits of model complexity in fisheries, modeling costs are rarely considered. In the absence of cost data in the literature, we report, as a starting point, relative costs of single-species stock assessment and marine ecosystem models from two Australian organizations. We found that costs varied by two orders of magnitude, and that ecosystem model costs increased with model complexity. Using these costs, we walk through a hypothetical example of cost-benefit analysis. The demonstration is intended to catalyze the reporting of modeling costs and benefits., (© 2024 Fisheries Society of the British Isles.)
- Published
- 2024
- Full Text
- View/download PDF
4. Unlocking the potential of forage fish to reduce the global burden of disease.
- Author
-
Xia S, Takakura J, Tsuchiya K, Park C, Heneghan RF, and Takahashi K
- Subjects
- Animals, Humans, Diet, Risk Assessment, Forecasting, Global Burden of Disease, Red Meat
- Abstract
Red meat consumption is associated with an elevated risk of mortality from non-communicable diseases (NCDs). In contrast, forage fish, as highly nutritious, environmentally friendly, affordable, and the most abundant fish species in the ocean, are receiving increasing interest from a global food system perspective. However, little research has examined the impact of replacing red meat with forage fish in the global diet on diet-related NCDs., Methods: We based our study on datasets of red meat projections in 2050 for 137 countries and forage fish catches. We replaced the red meat consumption in each country with forage fish (from marine habitats), without exceeding the potential supply of forage fish. We used a comparative risk assessment framework to investigate how such substitutions could reduce the global burden of diet-related NCDs in adults., Results: The results of our study show that forage fish may replace only a fraction (approximately 8%) of the world's red meat due to its limited supply, but it may increase global daily per capita fish consumption close to the recommended level. Such a substitution could avoid 0.5-0.75 million deaths and 8-15 million disability-adjusted life years, concentrated in low- and middle-income countries. Forage fish as an alternative to red meat could double (or more) the number of deaths that could be avoided by simply reducing red meat consumption., Conclusions: Our analysis suggests that forage fish is a promising alternative to red meat. Policies targeting the allocation of forage fish to regions where they are needed, such as the Global South, could be more effective in maximising the potential of forage fish to reduce the global burden of disease., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2024
- Full Text
- View/download PDF
5. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines.
- Author
-
Atkinson A, Rossberg AG, Gaedke U, Sprules G, Heneghan RF, Batziakas S, Grigoratou M, Fileman E, Schmidt K, and Frangoulis C
- Subjects
- Animals, Biomass, Carbon, Phytoplankton, Nutritional Status, Nutrients
- Abstract
Under climate change, model ensembles suggest that declines in phytoplankton biomass amplify into greater reductions at higher trophic levels, with serious implications for fisheries and carbon storage. However, the extent and mechanisms of this trophic amplification vary greatly among models, and validation is problematic. In situ size spectra offer a novel alternative, comparing biomass of small and larger organisms to quantify the net efficiency of energy transfer through natural food webs that are already challenged with multiple climate change stressors. Our global compilation of pelagic size spectrum slopes supports trophic amplification empirically, independently from model simulations. Thus, even a modest (16%) decline in phytoplankton this century would magnify into a 38% decline in supportable biomass of fish within the intensively-fished mid-latitude ocean. We also show that this amplification stems not from thermal controls on consumers, but mainly from temperature or nutrient controls that structure the phytoplankton baseline of the food web. The lack of evidence for direct thermal effects on size structure contrasts with most current thinking, based often on more acute stress experiments or shorter-timescale responses. Our synthesis of size spectra integrates these short-term dynamics, revealing the net efficiency of food webs acclimating and adapting to climatic stressors., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Improving the biological realism of predator-prey size relationships in food web models alters ecosystem dynamics.
- Author
-
Murphy KJ, Pecl GT, Everett JD, Heneghan RF, Richards SA, Richardson AJ, Semmens JM, and Blanchard JL
- Subjects
- Animals, Biomass, Body Size, Feeding Behavior, Predatory Behavior, Models, Biological, Ecosystem, Food Chain
- Abstract
Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.
- Published
- 2023
- Full Text
- View/download PDF
7. Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities.
- Author
-
Cinner JE, Caldwell IR, Thiault L, Ben J, Blanchard JL, Coll M, Diedrich A, Eddy TD, Everett JD, Folberth C, Gascuel D, Guiet J, Gurney GG, Heneghan RF, Jägermeyr J, Jiddawi N, Lahari R, Kuange J, Liu W, Maury O, Müller C, Novaglio C, Palacios-Abrantes J, Petrik CM, Rabearisoa A, Tittensor DP, Wamukota A, and Pollnac R
- Subjects
- Agriculture, Indonesia, Madagascar, Climate Change, Fisheries
- Abstract
Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
8. The global ocean size spectrum from bacteria to whales.
- Author
-
Hatton IA, Heneghan RF, Bar-On YM, and Galbraith ED
- Abstract
It has long been hypothesized that aquatic biomass is evenly distributed among logarithmic body mass size classes. Although this community structure has been observed regionally, mostly among plankton groups, its generality has never been formally tested across all marine life over the global ocean, nor have the impacts of humans on it been globally assessed. Here, we bring together data at the global scale to test the hypothesis from bacteria to whales. We find that biomass within most order of magnitude size classes is indeed remarkably constant, near 1 gigatonne (Gt) wet weight (10
15 g), but bacteria and large marine mammals are markedly above and below this value, respectively. Furthermore, human impacts appear to have significantly truncated the upper one-third of the spectrum. This dramatic alteration to what is possibly life’s largest-scale regularity underscores the global extent of human activities.- Published
- 2021
- Full Text
- View/download PDF
9. Next-generation ensemble projections reveal higher climate risks for marine ecosystems.
- Author
-
Tittensor DP, Novaglio C, Harrison CS, Heneghan RF, Barrier N, Bianchi D, Bopp L, Bryndum-Buchholz A, Britten GL, Büchner M, Cheung WWL, Christensen V, Coll M, Dunne JP, Eddy TD, Everett JD, Fernandes-Salvador JA, Fulton EA, Galbraith ED, Gascuel D, Guiet J, John JG, Link JS, Lotze HK, Maury O, Ortega-Cisneros K, Palacios-Abrantes J, Petrik CM, du Pontavice H, Rault J, Richardson AJ, Shannon L, Shin YJ, Steenbeek J, Stock CA, and Blanchard JL
- Abstract
Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario. Regional shifts in the direction of biomass changes highlight the continued and urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change to help support adaptation planning., Competing Interests: Competing interestsThe authors declare no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
10. Marine wild-capture fisheries after nuclear war.
- Author
-
Scherrer KJN, Harrison CS, Heneghan RF, Galbraith E, Bardeen CG, Coupe J, Jägermeyr J, Lovenduski NS, Luna A, Robock A, Stevens J, Stevenson S, Toon OB, and Xia L
- Subjects
- Animals, Biomass, Climate Change, Computer Simulation, Conservation of Natural Resources, Oceans and Seas, Russia, United States, Fisheries, Fishes, Food Security, Models, Theoretical, Nuclear Warfare
- Abstract
Nuclear war, beyond its devastating direct impacts, is expected to cause global climatic perturbations through injections of soot into the upper atmosphere. Reduced temperature and sunlight could drive unprecedented reductions in agricultural production, endangering global food security. However, the effects of nuclear war on marine wild-capture fisheries, which significantly contribute to the global animal protein and micronutrient supply, remain unexplored. We simulate the climatic effects of six war scenarios on fish biomass and catch globally, using a state-of-the-art Earth system model and global process-based fisheries model. We also simulate how either rapidly increased fish demand (driven by food shortages) or decreased ability to fish (due to infrastructure disruptions), would affect global catches, and test the benefits of strong prewar fisheries management. We find a decade-long negative climatic impact that intensifies with soot emissions, with global biomass and catch falling by up to 18 ± 3% and 29 ± 7% after a US-Russia war under business-as-usual fishing-similar in magnitude to the end-of-century declines under unmitigated global warming. When war occurs in an overfished state, increasing demand increases short-term (1 to 2 y) catch by at most ∼30% followed by precipitous declines of up to ∼70%, thus offsetting only a minor fraction of agricultural losses. However, effective prewar management that rebuilds fish biomass could ensure a short-term catch buffer large enough to replace ∼43 ± 35% of today's global animal protein production. This buffering function in the event of a global food emergency adds to the many previously known economic and ecological benefits of effective and precautionary fisheries management., Competing Interests: The authors declare no competing interest., (Copyright © 2020 the Author(s). Published by PNAS.)
- Published
- 2020
- Full Text
- View/download PDF
11. Climate change impacts on marine ecosystems through the lens of the size spectrum.
- Author
-
Heneghan RF, Hatton IA, and Galbraith ED
- Abstract
Climate change is a complex global issue that is driving countless shifts in the structure and function of marine ecosystems. To better understand these shifts, many processes need to be considered, yet they are often approached from incompatible perspectives. This article reviews one relatively simple, integrated perspective: the abundance-size spectrum. We introduce the topic with a brief review of some of the ways climate change is expected to impact the marine ecosystem according to complex numerical models while acknowledging the limits to understanding posed by complex models. We then review how the size spectrum offers a simple conceptual alternative, given its regular power law size-frequency distribution when viewed on sufficiently broad scales. We further explore how anticipated physical aspects of climate change might manifest themselves through changes in the elevation, slope and regularity of the size spectrum, exposing mechanistic questions about integrated ecosystem structure, as well as how organism physiology and ecological interactions respond to multiple climatic stressors. Despite its application by ecosystem modellers and fisheries scientists, the size spectrum perspective is not widely used as a tool for monitoring ecosystem adaptation to climate change, providing a major opportunity for further research., (© 2019 The Author(s).)
- Published
- 2019
- Full Text
- View/download PDF
12. From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems.
- Author
-
Blanchard JL, Heneghan RF, Everett JD, Trebilco R, and Richardson AJ
- Subjects
- Animals, Bacteria, Body Size, Humans, Oceans and Seas, Whales, Ecosystem, Models, Theoretical
- Abstract
Size-based ecosystem modeling is emerging as a powerful way to assess ecosystem-level impacts of human- and environment-driven changes from individual-level processes. These models have evolved as mechanistic explanations for observed regular patterns of abundance across the marine size spectrum hypothesized to hold from bacteria to whales. Fifty years since the first size spectrum measurements, we ask how far have we come? Although recent modeling studies capture an impressive range of sizes, complexity, and real-world applications, ecosystem coverage is still only partial. We describe how this can be overcome by unifying functional traits with size spectra (which we call functional size spectra) and highlight the key knowledge gaps that need to be filled to model ecosystems from bacteria to whales., (Copyright © 2017 Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.