1. A dressed singlet-triplet qubit in germanium
- Author
-
Tsoukalas, Konstantinos, von Lüpke, Uwe, Orekhov, Alexei, Hetényi, Bence, Seidler, Inga, Sommer, Lisa, Kelly, Eoin G., Massai, Leonardo, Aldeghi, Michele, Pita-Vidal, Marta, Hendrickx, Nico W., Bedell, Stephen W., Paredes, Stephan, Schupp, Felix J., Mergenthaler, Matthias, Salis, Gian, Fuhrer, Andreas, and Harvey-Collard, Patrick
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Quantum Physics - Abstract
In semiconductor hole spin qubits, low magnetic field ($B$) operation extends the coherence time ($T_\mathrm{2}^*$) but proportionally reduces the gate speed. In contrast, singlet-triplet (ST) qubits are primarily controlled by the exchange interaction ($J$) and can thus maintain high gate speeds even at low $B$. However, a large $J$ introduces a significant charge component to the qubit, rendering ST qubits more vulnerable to charge noise when driven. Here, we demonstrate a highly coherent ST hole spin qubit in germanium, operating at both low $B$ and low $J$. By modulating $J$, we achieve resonant driving of the ST qubit, obtaining an average gate fidelity of $99.68\%$ and a coherence time of $T_\mathrm{2}^*=1.9\,\mu$s. Moreover, by applying the resonant drive continuously, we realize a dressed ST qubit with a tenfold increase in coherence time ($T_\mathrm{2\rho}^*=20.3\,\mu$s). Frequency modulation of the driving signal enables universal control, with an average gate fidelity of $99.64\%$. Our results demonstrate the potential for extending coherence times while preserving high-fidelity control of germanium-based ST qubits, paving the way for more efficient operations in semiconductor-based quantum processors.
- Published
- 2025